Supporting information

Ethanol Synthesis from Syngas over Cu(Pd)-doped Fe(100) : A Systematic Theoretical Investigation

Wei Wang¹, Ye Wang^{*,2}, and Gui-Chang Wang^{*,1,3}

(¹College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Nankai University, Tianjin 300071, P. R. China; ² State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; ³ State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China)

*Corresponding author: Gui-Chang Wang. E-mail: wangguichang@nankai.edu.cn

Ye Wang. E-mail: wangye@xmu.edu.cn

Telephone: +86-22-23503824 (O) Fax: +86-22-23502458

Contents:

Table S1. Surface energies (j/m-²) of iron surfaces for comparison

Table S2. Adsorption Energies and Geometric Parameters for Various Pertinent Species in the Ethanol Synthesis Reaction on Fe₉/Fe(100)

Table S3. Adsorption Energies and Geometric Parameters for Various Pertinent Species in the Ethanol Synthesis Reaction on Cu₉/Fe(100)

Table S4. Adsorption Energies and Geometric Parameters for Various Pertinent Species in the Ethanol Synthesis Reaction on Fe₃Pd₆/Fe(100)

Table S5. Calculated reaction energies (ΔE), energy barriers (E_a), and the forming bond lengths of TSs on Fe₉/Fe(100) surface in this work

Table S6. Calculated reaction energies (ΔE), energy barriers (E_a), and the forming bond lengths of TSs on Cu₉/Fe(100) surface in this work

Table S7. Calculated reaction energies (ΔE), energy barriers (E_a), and the forming bond lengths of TSs on Fe₃Pd₆/Fe(100) surface in this work

Table S8. The d-band center and d-band width of Cu/Fe and Pd/Fe surfaces (unit: eV)

Table S9. The ICOHP value for the interaction between C and Fe on Cu/Fe and Pd/Fe surfaces.

Table S10. Elementary Reaction Steps and Kinetic Parameters for Ethanol Reaction on Fe₃Cu₆/Fe(100) in This Work ^a

Table S11. Elementary Reaction Steps and Kinetic Parameters for Ethanol Reaction on Fe₉/Fe(100) in This Work ^a

 Table S12. Elementary Reaction Steps and Kinetic Parameters for Ethanol Reaction on Cu₉/Fe(100)

 in This Work ^a

 Table S13.
 Elementary Reaction Steps and Kinetic Parameters for Ethanol Reaction on

 Fe₃Pd₆/Fe(100) in This Work ^a

Figure S1. Optimized adsorption structures of the reaction intermediates involved in the syngas reaction on $Fe_9/Fe(100)$

Figure S2. Optimized adsorption structures of the reaction intermediates involved in the syngas reaction on Cu₉/Fe(100)

Figure. S3. Optimized adsorption structures of the reaction intermediates involved in the syngas reaction on $Fe_3Pd_6/Fe(100)$.

Figure S4. Optimized configurations for the main TSs involved in the reactions on Fe₉/Fe(100)

Figure S5. Optimized configurations for the main TSs involved in the reactions on Cu₉/Fe(100)

Figure S6. Optimized configurations for the main TSs involved in the reactions on Fe₃Pd₆/Fe(100)..

Figure S7. The projected DOS onto d-band of (a) $Fe_9/Fe(100)$, (b) $Fe_3Cu_6/Fe(100)$ and (c) $Cu_9/Fe(100)$ surfaces

Figure S8. The DRC distribution of the elementary steps toward (a) CH_4 , (b) CH_3OH and (c) CH_3CH_2OH formation on the Fe₉/Fe(100) surfaces. Note: +/- in brackets refers to the positive or negative values of DRC, corresponding to promotion or inhibition effects on the rate.

Figure S9. The DRC distribution of the elementary steps toward (a) CH_4 , (b) CH_3OH and (c) CH_3CH_2OH formation on the $Cu_9/Fe(100)$ surfaces. Note: +/- in brackets refers to the positive or negative values of DRC, corresponding to promotion or inhibition effects on the rate.

Figure S10. The DRC distribution of the elementary steps toward (a) CH_4 , (b) CH_3OH and (c) CH_3CH_2OH formation on the Fe₃Pd₆/Fe(100) surfaces. Note: +/- in brackets refers to the positive or negative values of DRC, corresponding to promotion or inhibition effects on the rate.

Figure S1. Optimized adsorption structures of the reaction intermediates involved in the syngas reaction on Fe₉/Fe(100)

Figure S2. Optimized adsorption structures of the reaction intermediates involved in the syngas reaction on Cu₉/Fe(100)

Figure S3. Optimized adsorption structures of the reaction intermediates involved in the syngas reaction on $Fe_3Pd_6/Fe(100)$

Figure. S4 Optimized configurations for the main TSs involved in the reactions on Fe₉/Fe(100).

CO+H=COH

CO+H=HCO

HCO=CH+O

CH+H=CH₂

CH₂+H=CH₃

СНО+Н=СНОН

CHO+H=CH₂O

CH₂0=CH₂+0

CH₂O+H=CH₂OH

CH₂0+H=CH₃0

CH₃0=CH₃+0

CH₃O+H=CH₃OH

CH+CO=CHCO

СН+СНО=СНСНО

CH₂+CO=CH₂CO

CH₃CHOH+H=CH₃CH₂OH

CH₃+CO=CH₃CO

CH3+CH0=CH3CH0

СН₃СНО+Н=СН₃СНОН

Figure. S5 Optimized configurations for the main TSs involved in the reactions on Cu₉/Fe(100).

Figure. S6 Optimized configurations for the main TSs involved in the reactions on Fe₃Pd₆/Fe(100).

Figure S7. The projected DOS onto d-band of (a) $Fe_9/Fe(100)$, (b) $Fe_3Cu_6/Fe(100)$, (c) $Cu_9/Fe(100)$, and (d) $Fe_3Pd_6/Fe(100)$ surfaces.

Figure S8. The DRC distribution of the elementary steps toward (a) CH_4 , (b) CH_3OH and (c) CH_3CH_2OH formation on the Fe₉/Fe(100) surfaces. Note: +/- in brackets refers to the positive or negative values of DRC, corresponding to promotion or inhibition effects on the rate.

Fe₉/Fe(100) For the synthesis of methane, all the elementary steps listed in Table S8 were investigated, and steps M5 and M8 were calculated to have the main impact on the DRC as shown in Figure S8. As a result, the sensitivity analysis will focus on the hydrogenation of CO, the dissociation of HCO, the hydrogenation of CH, and the hydrogenation of CH₃ in M4, M5, M6, and M8, respectively. The dissociation of HCO in M5 and the hydrogenation of CH₃ in M8 have high DRC contributions of 41.12% and 49.21%. The steps could promote the form of CH₄ with positive DRC value toward CH₄. Obviously, elementary steps M5 and M8 are proposed to be the rate-determining steps for methane formation.

For the formation of CH₃OH, CH₂O hydrogenation and CH₃O hydrogenation have positive DRC contribution towards hydrocarbon species, indicating that the step M11 and M12 will promote the formation of CH₃OH. The CH₂O hydrogenation in M11 and CH₃O hydrogenation in M12 have

the same high DRC contributions of 45.65%. Elementary steps M11 and M12 are proposed to be the rate-limiting steps for methanol formation.

The HCO dissociation in M5 and CH₃CH₂O hydrogenation in M16 have high DRC contributions of 47.71% and 47.08%. For the formation of CH₃CH₂OH, the steps M5 and M16 have positive DRC contribution, indicating that the step M16 will promote the formation of CH₃CH₂OH. M5 and M16 are proposed to be the rate-determining steps for ethanol formation

Figure S9. The DRC distribution of the elementary steps toward (a) CH_3OH , (b) CH_4 and (c) CH_3CH_2OH formation on the $Cu_9/Fe(100)$ surfaces. Note: +/- in brackets refers to the positive or negative values of DRC, corresponding to promotion or inhibition effects on the rate.

Cu₉/Fe(100) The DRC analysis were used to reveal the rate-controlling steps to investigate the factor affecting the reactivity. In Table S9, we find that elementary reaction M10 on the Cu₉/Fe(100) site was calculated to have the main impact on the DRC shown in Figure S9. The hydrogenation of HCO in M10 has high DRC contributions of 96.77%. The step could promote the form of CH₃OH with

positive DRC value toward CH₃OH. Elementary step M10 is proposed to be the rate-determining steps for methanol formation.

For the formation of CH_4 , the HCO dissociation, CH_2 hydrogenation and CH_3 hydrogenation have positive DRC contribution towards hydrocarbon species, indicating that the steps M5, M7, and M8 will promote the formation of CH_4 . HCO dissociation in M5 and CH_3 hydrogenation in M8 have high DRC contributions of 41.23% and 15.18%. Obviously, elementary steps M5 and M8 are proposed to be the rate-determining steps for methane formation.

For the formation of CH₃CH₂OH, the HCO dissociation, CH₃ insertion, and CH₃CHO hydrogenation have positive DRC contribution, indicating that the steps M5, M14, and M15 will promote the formation of CH₃CH₂OH. The HCO dissociation, CH₃ insertion and CH₃CHO hydrogenation have high DRC contributions of 49.93%, 39.53%, and 10.54%. Steps M5 and M14 are proposed to be the rate-determining steps for ethanol formation.

Figure S10. The DRC distribution of the elementary steps toward (a) CH_3OH , (b) CH_4 and (c) CH_3CH_2OH formation on the Pd/Fe(100) surfaces. Note: +/- in brackets refers to the positive or negative values of DRC, corresponding to promotion or inhibition effects on the rate.

Fe₃Pd₆/Fe(100) For the reaction on the Pd/Fe(100) site, as is shown in Figure 6, high reactivity into CH₃OH are gained and increase with the temperature going up. Herein, we use the DRC analysis to reveal the rate-controlling steps to get the sight of the factor affecting the reactivity. Then, we have explored all the elementary steps listed in Table S10, and find that elementary reactions M9 and M10 on the Pd/Fe(100) site were calculated to have the main impact on the DRC shown in Figure S11. As a result, the sensitivity analysis will focus on the hydrogenation of CO to HCO species, the hydrogenation of HCO to CH₂O, hydrogenation in CH₂O to CH₃O and the hydrogenation of CH₃O to CH₃OH species in M3, M9, M10, and M11, respectively. The hydrogenation of CO to HCO species in M3, the hydrogenation of HCO to CH₂O species in M9, the hydrogenation of CH₂O in M10 and the hydrogenation of CH₃O in M11 have high DRC contributions of 21.00%, 13.15%, 31.07%, and 34.79%. The steps could promote the form of CH₃OH with positive DRC value toward CH₃OH. For the formation of CH₄, the HCO dissociation, CH₂ hydrogenation and CH₃ hydrogenation have positive DRC contribution towards hydrocarbon species, indicating that the step M4, M6, and M7 will promote the formation of CH₄. The HCO dissociation in M4, CH₂ hydrogenation in M6 and CH₃ hydrogenation in M7 have high DRC contributions of 35.23%, 34.99%, and 29.78%. For the formation of CH₃CH₂OH, the HCO dissociation, CH₂ hydrogenation and CH₃ insertion have positive DRC contribution towards hydrocarbon species, indicating that the step M4, M6, and M13 will promote the formation of CH₃CH₂OH. The HCO dissociation in M4, CH₂ hydrogenation in M6 and CH₃ insertion in M13 have high DRC contributions of 37.85%, 40.22%, and 21.93%.

Table S1. Surface energies (j/m-²) of iron surfaces for comparison

	Fe(100)	Fe(110)	Fe(111)	Fe(200)	Fe(210)	Fe(211)	Fe(310)
Surface energy (j/m- ²)	2.46	2.41	2.65	2.45	2.55	2.52	2.50

Table S2. Adsorption Energies and Geometric Parameters for Various Pertinent Species in the Ethanol SynthesisReaction on Fe₉/Fe(100)

species on	adsorption configuration	E_{ads} (eV)	D _{Fe-O} (Å)	D _{Fe-C} (Å)
Fe ₉ /Fe(100)				
CH ₃ CH ₂ OH	bridge through O	-0.27(-0.45)	2.41	-
CH ₃ CH ₂ O	bridge through O	-3.09	2.01	-
CH ₃ CHOH	top through O and top through C^{α}	-1.59	2.17	2.04
CH ₃ CHO	bridge through O and top through C ^a	-0.85	2.01	2.11
CH ₃ CO	bridge through O and bridge through C^{α}	-2.68	2.00	2.02
CH ₂ CHO	bridge through O and bridge through C^{β}	-3.12	2.01	2.13
CH ₂ CO	bridge through O and bridge through C^{α}	-1.98	2.01	1.97
СНСНО	bridge through O and bridge through C^{β}	-5.17	2.07	2.08
СНСО	bridge through O and bridge through C^{β}	-3.70	2.05	1.98
СНОН	bridge through C and top through O	-3.87	2.16	2.17

CH ₃ OH	bridge through O	-0.20(-0.46)	2.40	-
CH ₃ O	bridge through O	-3.12	2.00	-
CH ₂ O	bridge through C and bridge through O	-1.67	2.02	2.15
СОН	4-fold hollow through C	-4.55	-	2.03
НСО	bridge through C and bridge through O	-3.04	2.00	1.99
СО	4-fold hollow through C and bridge through O	-2.07(-1.47)	2.14	1.96
CH ₄	4-fold hollow	0.10(-0.15)	-	3.99
CH ₃	top through C	-1.88	-	2.07
CH ₂	4-fold hollow through C	-4.66	-	2.14
СН	4-fold hollow through C	-7.37	-	2.04
H ₂ O	bridge through O	-0.21(-0.32)	2.39	
H_2	top through H	-0.19(-0.01)	1.72	
0	4-fold hollow through C	-7.04	2.06	-
Н	4-fold hollow through H	-2.66	-	2.03
С	4-fold hollow through C	-8.48		1.96

Note: Entries in parentheses are the energies after vDW-DF correction

 Table S3. Adsorption Energies and Geometric Parameters for Various Pertinent Species in the Ethanol Synthesis

 Reaction on Cu₉/Fe(100)

_

species on	adsorption configuration	E_{ads} (eV)	d _{Fe-O} (Å)	d _{Fe-C} (Å)
Cu ₉ /Fe(100)				
CH ₃ CH ₂ OH	top through O	-0.30(-0.58)	2.27	-
CH ₃ CH ₂ O	bridge through O	-2.43	2.00	-
CH ₃ CHOH	bridge through O and bridge through C^{α}	-1.02	2.22	2.06
CH ₃ CHO	bridge through O and bridge through C^{α}	-0.07	2.06	2.22
CH ₃ CO	bridge through O and bridge through C^{α}	-1.35	2.15	2.08
CH ₂ CHO	bridge through O and bridge through C^{β}	-2.02	2.09	2.24
CH ₂ CO	bridge through O and bridge through C^{α}	-0.83	2.04	1.98
СНСНО	bridge through O and bridge through C^{β}	-4.13	2.07	2.02
СНСО	bridge through C^{α} and bridge through C^{β}	-2.34	-	2.17/2.01

CH ₂ OH	bridge through C and bridge through O	-1.25	2.39	2.14
СНОН	bridge through C and bridge through O	-2.81	2.56	2.23
CH ₃ OH	bridge through O -	-0.20(-0.53)	2.31	-
CH ₃ O	bridge through O	-2.48	1.98	-
CH ₂ O	bridge through C and bridge through O	-0.45	2.04	2.16
СОН	4-fold hollow through C	-3.17	-	2.08/2.12
НСО	bridge through C and bridge through O	-1.52	2.05	2.09
CO	4-fold hollow through C and bridge through O	-0.92(-0.54)	-	2.23
CH ₄	4-fold hollow through C	-0.01(-0.32)	-	3.52
CH ₃	bridge through C	-1.54	-	2.12
CH_2	4-fold hollow through C -	-3.57	-	2.17
СН	4-fold hollow through C	-6.15	-	2.05
H ₂ O	bridge through O	-0.09(-0.27)	2.39	
H_2	top through H	0.03(-0.39)	2.84	
0	4-fold hollow through C	-5.79	2.10	-
Н	4-fold hollow through H	-2.41	-	2.00
С	4-fold hollow through C	-6.81	-	1.99

Note: Entries in parentheses are the energies after vDW-DF correction

Table S4. Adsorption Energies and Geometric Parameters for Various Pertinent Species in the Ethanol SynthesisReaction on Fe₃Pd₆/Fe(100)

species on	adsorption configuration	E_{ads} (eV)	$d_{Fe\text{-O/Pd-O}}(\text{\AA})$	D _{Fe-C/Pd-C} (Å)
CH ₃ CH ₂ OH	top through O	-0.47	2.17/-	-
CH ₃ CH ₂ O	bridge through O	-2.93	1.96/-	-
CH ₃ CHOH	bridge through O and top through C ^a	-1.32	2.26	2.70/2.14

CH ₃ CHO	bridge through O and top through C^{α}	-0.69	2.03	2.65/2.16
CH ₃ CO	bridge through O and bridge through C^{α}	-2.21	2.03/-	2.00/2.16
CH ₂ CHO	top through O and top through C^{β}	-5.15	1.94/-	2.13/2.32
CH ₂ CO	bridge through O and bridge through C ^a	1.52	2.01/-	2.00/2.25
СНСНО	bridge through O and bridge through C^{β}	-4.51	2.04/-	2.01/2.21
СНСО	bridge through O and bridge through C^{β}	-2.89	2.08/-	1.98/2.26
CH ₂ OH	top through C and top through O	-1.49	2.18/-	2.11/2.34
СНОН	bridge through C and top through O	-3.53	2.25/-	1.92/2.11
CH ₃ OH	bridge through O -	-0.36	-	2.31/-
CH ₃ O	bridge through O	-2.91	-	1.96/-
CH ₂ O	bridge through C and bridge through O	-1.06	2.00/-	2.29/2.19
СОН	4-fold hollow through C	-3.87	-	2.06/2.18
НСО	bridge through C and bridge through O	-2.05	2.02/-	1.96/2.16
СО	4-fold hollow through C and bridge through O	-1.34	2.13/-	1.93/2.10
CH_4	4-fold hollow	0.08	-	3.64/-
CH ₃	bridge through C	-1.81	-	2.15/-
CH_2	4-fold hollow through C -	-3.90	-	2.03/2.31
СН	4-fold hollow through C	-6.70	-	1.98/2.17
0	4-fold hollow through C	-6.28	1.90/2.48	-
Н	4-fold hollow through H	-2.59	-	1.88/2.06
С	4-fold hollow through C	-7.74	-	1.92/2.08

Reaction	$\Delta E/ eV$	E _a / eV	d/ Å	
M1 CO(g)+*→CO*	-2.07	-	-	
M2 H ₂ (g)+* \rightarrow H ₂ *	-0.01	-	-	
M3 CO*+ *→C*+O*	-0.89	1.10(1.18)	1.94	
$M4 H_2^* \rightarrow H^* + H^*$	-0.62	0.02(0.02)	0.98	
M5 CO*+ H*→HCO*+*	0.53	0.82(0.82)	1.48	
M6 HCO*+ *→CH*+O*	-1.41	0.50(0.56)	1.93	
M7 HCO*+ H* \rightarrow CH ₂ O*+*	-0.10	0.90(0.90)	1.68	
M8 HCO*+ H*→CHOH*+*	1.12	1.49(1.43)	1.33	
M9 CH ₂ O*+ * \rightarrow CH ₂ *+O*	-0.92	0.85(0.91)	2.08	
M10 CH ₂ O*+ H* \rightarrow CH ₃ O*+*	-0.52	0.81(0.85)	1.82	
M11 CH ₃ O*+ * \rightarrow CH ₃ *+O*	-0.93	1.67(1.70)	2.23	
M12 CH ₃ O*+H * \rightarrow CH ₃ OH*+*	0.52	1.50(1.47)	1.28	
M13 CH ₃ OH* \rightarrow CH ₃ OH(g)+*	0.20	-	-	
M14 CH*+ CO* \rightarrow CHCO*+*	1.24	1.83(1.79)	1.46	
M15 CH*+ HCO*→CHCHO*+*	0.17	1.79(1.79)	1.89	
M16 CH ₂ *+ CO* \rightarrow CH ₂ CO*+*	0.18	1.85(1.81)	2.12	
M17 CH ₂ *+ HCO* \rightarrow CH ₂ CHO*+*	-0.28	1.78(1.75)	2.12	
M18 CH ₃ *+ CO* \rightarrow CH ₃ CO*+*	0.16	2.16(2.19)	2.05	
M19 CH ₃ *+ HCO* \rightarrow CH ₃ CHO*+*	0.23	1.76(1.76)	2.11	
M20 CH*+H * \rightarrow CH ₂ *+*	0.51	0.75(0.79)	1.54	
M21 CH ₂ *+H * \rightarrow CH ₃ *+*	-0.55	0.76(0.76)	1.68	
M22 CH ₃ *+H * \rightarrow CH ₄ *+*	-0.45	0.80(0.80)	1.90	
M23 CH ₄ * \rightarrow CH ₄ (g)+*	-0.10	-	-	
M24 CH ₃ CHO*+H*→CH ₃ CHOH*+*	0.86	1.49(1.43)	1.34	
M25 CH ₃ CHO*+H* \rightarrow CH ₃ CH ₂ O*+*	-0.11	0.82(0.82)	1.91	
M26 CH ₃ CH ₂ O*+H* \rightarrow CH ₃ CH ₂ OH*+*	0.83	1.55(1.55)	1.27	

Table S5. Calculated reaction energies (ΔE), energy barriers (E_a), and the forming bond lengths of TSs on Fe₉/Fe(100) surface in this work

$M27CH_3CH_2OH^* \rightarrow CH_3CH_2OH(g) + *$	0.27	-	-
M28 O* + H* \rightarrow OH* + *	0.10	1.30(1.41)	1.32
M29 OH* + * \rightarrow H ₂ O* + *	0.42	1.20(1.25)	1.25
$M30H_2O^* \rightarrow H_2O(g) + *$	0.32	-	-

Note: Entries in parentheses are the energies before ZPE

Table S6. Calculated reaction energies (ΔE), energy barriers (E_a), and the forming bond lengths of TSs on Cu₉/Fe(100) surface in this work

Reaction	$\Delta E/ eV$	E_a/eV	d/ Å	
M1CO(g)+*→CO*	-0.92	-	-	
$M2H_2(g) + * \rightarrow H_2 *$	-0.25	-	-	
M3 CO*+ *→C*+O*	0.57	2.32(2.38)	1.97	
M4 H ₂ * + * \rightarrow H* + H*	-0.31	0.30(0.30)	1.26	
M5 CO*+ H*→HCO*+*	0.75	1.07(1.07)	1.55	
M6 HCO*+ *→CH*+O*	-0.57	0.99(1.02)	1.93	
M7 HCO*+ H* \rightarrow CH ₂ O*+*	-0.45	0.59(0.59)	1.93	
M8 HCO*+ H*→CHOH*+*	0.47	1.06(1.09)	1.41	
M9 CH ₂ O*+ * \rightarrow CH ₂ *+O*	0.11	1.83(1.89)	2.39	
M10 CH ₂ O*+ H* \rightarrow CH ₃ O*+*	-0.69	0.50(0.50)	2.51	
M11 CH ₂ O*+ H* \rightarrow CH ₂ OH*+*	0.24	2.00(1.89)	1.44	
M12 CH ₃ O*+ * \rightarrow CH ₃ *+O*	-0.02	1.56(1.63)	2.23	
M13 CH ₃ O*+H *→CH ₃ OH*+*	0.03	0.74(0.74)	1.43	
M14 CH ₃ OH* \rightarrow CH ₃ OH(g)+*	0.20	-	-	
M15 CH*+ CO* \rightarrow CHCO*+*	0.33	1.07(1.07)	1.94	
M16 CH*+ HCO*→CHCHO*+*	-0.90	0.79(0.79)	2.09	
M17 CH ₂ *+ CO* \rightarrow CH ₂ CO*+*	-0.70	1.12(1.12)	2.19	
M18 CH ₂ *+ HCO* \rightarrow CH ₂ CHO*+*	-0.82	0.93(0.98)	2.32	
M19 CH ₃ *+ CO* \rightarrow CH ₃ CO*+*	-0.01	1.68(1.59)	2.08	
M20 CH ₃ *+ HCO* \rightarrow CH ₃ CHO*+*	-1.05	0.77(0.77)	2.69	
M21 CH*+H * \rightarrow CH ₂ *+*	0.25	0.89(0.92)	1.78	

M22 CH ₂ *+H * \rightarrow CH ₃ *+*	-0.53	0.91(0.94)	1.85
M23 CH ₃ *+H * \rightarrow CH ₄ *+*	-0.89	1.20(1.20)	2.42
M24 CH ₄ * \rightarrow CH ₄ (g)+*	0.01	-	-
M25 CH ₃ CHO*+H* \rightarrow CH ₃ CHOH*+*	0.29	1.53(1.49)	1.41
M26 CH ₃ CHO*+H* \rightarrow CH ₃ CH ₂ O*+*	-0.62	0.67(0.63)	2.06
M27 CH ₃ CH ₂ O*+H* \rightarrow CH ₃ CH ₂ OH*+*	-0.07	1.11(1.11)	1.63
M28 CH ₃ CH ₂ OH* \rightarrow CH ₃ CH ₂ OH(g)+*	0.30	-	-
M29 O* + H* \rightarrow OH* + *	0.08	1.20(1.29)	1.48
$M30 \text{ OH}^* + \text{H}^* \rightarrow \text{H}_2\text{O}^* + *$	-0.03	0.61(0.67)	1.43
M31 H ₂ O* \rightarrow H ₂ O(g)+*	0.39	-	-

Note: Entries in parentheses are the energies before ZPE

Table S7. Calculated reaction energies (ΔE), energy barriers (E_a), and the forming bond lengths of TSs on Fe₃Pd₆/Fe(100) surface in this work

Reaction	$\Delta E/ \mathrm{eV}$	E_a / eV	d/ Å
M1 CO(g)+ * \rightarrow CO*	-1.34	-	-
M2 H ₂ (g)+ * \rightarrow H ₂ *	-0.04	-	-
M3 CO*+ *→C*+O*	0.28	1.19	1.93
M4 H ₂ * + * \rightarrow H*+H*	-0.59	0.15	1.84
M5 CO*+ H* \rightarrow HCO*+*	0.19	0.77	1.50
M6 HCO*+ $* \rightarrow$ CH*+O*	-0.15	0.93	1.90
M7 HCO*+ H* \rightarrow CH ₂ O*+*	-0.01	0.70	1.69
M8 HCO*+ H*→CHOH*+*	0.80	1.44	1.26
M9 CH ₂ O*+ * \rightarrow CH ₂ *+O*	0.22	1.12	2.08
M10 CH ₂ O*+ H* \rightarrow CH ₃ O*+*	-0.53	0.70	2.08
M11 CH ₂ O*+ H* \rightarrow CH ₂ OH*+*	0.53	2.01	1.28
M12 CH ₃ O*+ * \rightarrow CH ₃ *+O*	0.10	1.70	2.14
M13 CH ₃ O*+H * \rightarrow CH ₃ OH*+*	0.17	0.64	1.36
M14 CH ₃ OH* \rightarrow CH ₃ OH(g)+*	0.36	-	-
M15 CH*+ CO* \rightarrow CHCO*+*	0.59	0.75	1.38

M16 CH*+ HCO* \rightarrow CHCHO*+*	-1.18	1.12	1.98
M17 CH ₂ *+ CO* \rightarrow CH ₂ CO*+*	-0.47	0.33	1.51
M18 CH ₂ *+ HCO* \rightarrow CH ₂ CHO*+*	-1.68	0.12	2.25
M19 CH ₃ *+ CO*→CH ₃ CO*+*	-0.24	1.27	2.04
M20 CH ₃ *+ HCO*→CH ₃ CHO*+*	-0.74	0.82	1.95
M21 CH*+H * \rightarrow CH ₂ *+*	0.50	0.76	1.53
M22 CH ₂ *+H * \rightarrow CH ₃ *+*	-0.42	0.85	1.68
M23 CH ₃ *+H * \rightarrow CH ₄ *+*	-0.35	0.79	1.57
M24 $CH_4^* \rightarrow CH_4(g)^{+*}$	-0.08	-	-
M25 CH ₃ CHO*+H*→CH ₃ CHOH*+*	0.58	1.87	1.33
M26 CH ₃ CHO*+H*→CH ₃ CH ₂ O*+*	-0.53	0.47	2.86
M27 CH ₃ CH ₂ O*+H* \rightarrow CH ₃ CH ₂ OH*+*	0.25	0.83	1.37
M28 CH ₃ CH ₂ OH* \rightarrow CH ₃ CH ₂ OH(g)+*	0.47	-	-
M29 O* + H* \rightarrow OH* + *	-0.13	1.38	1.44
$M30 \text{ OH}^* + \text{H}^* \rightarrow \text{H}_2\text{O}^* + *$	0.19	1.03	1.39
M31 H ₂ O* \rightarrow H ₂ O(g)+*	0.36	-	-

Table S8. The d-band center and d-band width of Cu/Fe surfaces (unit: eV)

	Fe ₃ Cu ₆ /Fe(100)	Fe ₉ /Fe(100)	Cu ₉ /Fe(100)	Fe ₃ Pd ₆ /Fe(100)
d-band center (eV)	-1.06	-0.87	-2.11	-1.12

Table S9. The ICOHP value for the interaction between C and Fe on Cu/Fe and Pd/Fe surfaces.

	Fe ₉ /Fe(100)	Fe ₃ Cu ₆ /Fe(100)	$Fe_{3}Pd_{6}/Fe(100)$	Cu ₉ /Fe(100)
ICOHP	-1.04	-0.42	-0.36	-0.11

Table S10. Elementary Reaction Steps and Kinetic Parameters for Ethanol Reaction on $Fe_3Cu_6/Fe(100)$ in This Work at 483 K

reaction	$E_{a} (eV)$	А	E_{a}^{-1} (eV)	A-1
M1 CO(g) + * \rightarrow CO*	0.0	1.6×10 ³	33.2	5.5×10 ¹⁷
$M2 H_2(g) + * \rightarrow H_2 *$	0.0	6.0×10 ³	16.1	$6.2 imes 10^{14}$
M3 $H_2^* + * \rightarrow H^* + H^*$	4.6	4.3×10^{12}	14.7	5.5×10 ¹³
M4 CO* + H* \rightarrow HCO* + *	18.3	1.9×10 ¹³	3.2	1.8×10^{13}
$\rm M5\;HCO^{*}+^{*}\rightarrow CH^{*}+O^{*}$	12.8	9.3×10 ¹²	32.6	1.5×10^{13}
$\rm M6~CH^{*} + H^{*} \rightarrow CH_{2}^{*} + ^{*}$	17.1	1.5×10^{13}	5.6	1.5×10^{13}
$\mathrm{M7}~\mathrm{CH_2}^* + \mathrm{H}^* \longrightarrow \mathrm{CH_3}^* + *$	18.4	3.2×10^{13}	20.7	9.0×10 ¹²
$\mathrm{M8}\ \mathrm{CH_3}^* + \mathrm{H}^* \rightarrow \mathrm{CH_4}^* + *$	18.0	3.3×10^{13}	25.6	3.0×10^{12}
$M9 \text{ CH}_4^* \rightarrow \text{CH}_4(g) + *$	2.0	9.6×10 ¹⁵	0.0	2.1×10^{3}
$M10 \ HCO* + H^* \rightarrow CH_2O* + *$	20.0	2.7×10^{13}	20.5	3.0×10 ¹³
$\mathrm{M11}\ \mathrm{CH_2O^*} + \mathrm{H^*} \rightarrow \mathrm{CH_3O^*} + \mathrm{*}$	18.3	3.5×10^{13}	26.8	1.6×10^{13}
$\mathrm{M12}\ \mathrm{CH_3O}{*} + \mathrm{H}{*} \rightarrow \mathrm{CH_3OH}{*} + {*}$	26.3	3.5×10^{13}	9.8	1.3×10^{13}
$M13 \text{ CH}_3\text{OH}^* \rightarrow \text{CH}_3\text{OH}(g) + *$	6.0	2.8×10^{17}	0.0	1.5×10^{3}
M14 CH ₃ * + CHO* \rightarrow CH ₃ CHO* + *	21.8	9.9×10 ¹²	32.1	$7.5 imes 10^{12}$
$\rm M15~CH_3CHO* + H^* \rightarrow CH_3CHOH* + *$	8.0	2.6×10^{13}	2.4	2.7×10^{13}
$M16 \text{ CH}_3\text{CHOH}* + \text{H}* \rightarrow \text{CH}_3\text{CH}_2\text{OH}* + *$	17.2	1.3×10^{13}	24.0	6.6×10 ¹²
$\mathrm{M17}\ \mathrm{CH_3CH_2OH}^* \rightarrow \mathrm{CH_3CH_2OH}(g) + *$	10.9	2.1×10^{18}	0.0	1.3×10^{3}
M18 O* + H* \rightarrow OH* + *	30.7	3.0×10^{13}	37.2	3.2×10^{13}
$\mathrm{M19~OH}^{*} + \mathrm{H}^{*} \rightarrow \mathrm{H_2O}^{*} + ^{*}$	26.8	2.7×10^{13}	36.3	1.1×10^{13}
$M20 \text{ H}_2\text{O}^* \rightarrow \text{H}_2\text{O}(g) + *$	7.6	3.7×10 ¹⁶	0.0	2.0×10^{3}

Table S11. Elementary Reaction Steps and Kinetic Parameters for Ethanol Reaction on Fe₉/Fe(100)in This Work at 483 K

reaction	$E_{\rm a}({\rm eV})$	А	E_{a}^{-1} (eV)	A-1
M1 CO(g) + * \rightarrow CO*	0.0	5.3×10 ³	30.8	7.1×10^{17}
$M2 H_2(g) + * \rightarrow H_2 *$	0.0	6.5×10^{3}	0.1	7.9×10^{14}
$M3 H_2^* + * \rightarrow H^* + H^*$	0.0	1.1×10^{13}	14.7	7.7×10^{12}
$\mathrm{M4}~\mathrm{CO}^{*} + \mathrm{H}^{*} \rightarrow \mathrm{HCO}^{*} + ^{*}$	17.8	1.1×10^{13}	9.8	1.7×10^{13}
$\rm M5~HCO^{*} + {}^{*} \rightarrow CH^{*} + O^{*}$	23.7	1.3×10^{13}	25.3	1.9×10 ¹³
M6 CH* + H* \rightarrow CH ₂ * + *	17.5	1.3×10^{13}	4.1	8.6×10 ¹²

$\mathrm{M7}\ \mathrm{CH_2}^* + \mathrm{H}^* \rightarrow \mathrm{CH_3}^* + ^*$	14.9	1.1×10^{13}	20.7	7.6×10^{12}
$\mathrm{M8}\ \mathrm{CH_3}^* + \mathrm{H}^* \rightarrow \mathrm{CH_4}^* + *$	18.3	2.0×10^{13}	23.3	2.8×10^{12}
$M9 \text{ CH}_4* \rightarrow \text{CH}_4(g) + *$	1.9	1.3×10^{16}	0.0	2.3×10^{3}
$M10 \text{ HCO}^* + \text{H}^* \rightarrow \text{CH}_2\text{O}^* + *$	13.4	1.4×10^{13}	10.5	1.3×10^{13}
$M11 \text{ CH}_2\text{O}^* + \text{H}^* \rightarrow \text{CH}_3\text{O}^* + *$	13.5	2.1×10^{13}	22.4	9.1×10^{12}
$M12 \ CH_3O* + H* \rightarrow CH_3OH* + *$	14.8	1.0×10^{13}	5.1	7.1×10^{12}
M13 CH ₃ OH* \rightarrow CH ₃ OH(g) + *	8.2	3.6×10 ¹⁷	0.0	1.6×10^{3}
M14 CH_3 * + CHO * \rightarrow CH_3CHO * + *	18.9	3.0×10^{13}	34.8	2.7×10^{13}
$M15 \text{ CH}_3\text{CHO}* + \text{H}* \rightarrow \text{CH}_3\text{CH}_2\text{O}* + *$	10.7	3.1×10 ¹³	18.8	2.2×10^{13}
$M16 \text{ CH}_3\text{CH}_2\text{O}^* + \text{H}^* \rightarrow \text{CH}_3\text{CH}_2\text{O}\text{H}^* + *$	19.3	2.0×10^{13}	8.3	6.9×10 ¹²
$M17 \text{ CH}_3\text{CH}_2\text{OH}* \rightarrow \text{CH}_3\text{CH}_2\text{OH}(g) + *$	11.0	2.0×10^{18}	0.0	1.3×10^{3}
M18 O* + H* \rightarrow OH* + *	30.0	2.2×10^{13}	37.2	1.4×10^{13}
$\mathrm{M19~OH}^{\ast}+^{\ast}\rightarrow\mathrm{H_2O}^{\ast}$	27.7	1.5×10^{13}	36.3	4.0×10^{13}
$M20 \text{ H}_2\text{O} + * \rightarrow \text{H}_2\text{O}(g)$	7.65	9.8×10 ¹⁷	0.0	9.9×10^{8}

Table S12. Elementary Reaction Steps and Kinetic Parameters for Ethanol Reaction on Cu₉/Fe(100) in This Work at 483 K

reaction	$E_{\rm a}({\rm eV})$	А	E_{a}^{-1} (eV)	A-1
M1 CO(g) + * \rightarrow CO*	0.0	5.3×10 ³	21.2	8.1×10 ¹⁷
$M2 H_2(g) + * \rightarrow H_2 *$	0.0	6.5×10^{3}	16.1	7.9×10^{14}
M3 $H_2^* \rightarrow H^* + H^*$	6.9	1.1×10^{12}	14.1	9.1×10 ¹²
M4 CO* + H* \rightarrow HCO* + *	24.6	1.8×10^{13}	4.2	2.1×10^{13}
M5 HCO* + * \rightarrow CH* + O*	22.8	1.2×10^{13}	37.5	1.8×10^{13}
$M6 \text{ CH}^* + \text{H}^* \rightarrow \text{CH}_2^* + ^*$	20.5	1.5×10^{13}	12.8	1.2×10^{13}
$\mathrm{M7}~\mathrm{CH_2}^* + \mathrm{H}^* \rightarrow \mathrm{CH_3}^* + *$	21.1	3.1×10^{13}	53.4	1.1×10^{12}
$M8 \text{ CH}_3 * + \text{H}^* \rightarrow \text{CH}_4 * + *$	15.0	1.6×10^{13}	8.6	5.0×10^{12}
$M9 \ CH_4* \rightarrow CH_4(g) + *$	1.8	4.1×10^{17}	0.0	1.6×10^{3}
$\mathrm{M10}\ \mathrm{HCO}^{*} + \mathrm{H}^{*} \rightarrow \mathrm{CH}_{2}\mathrm{O}^{*} + ^{*}$	17.8	2.3×10^{13}	11.5	3.8×10^{13}
$M11 \text{ CH}_2\text{O}^* + \text{H}^* \rightarrow \text{CH}_3\text{O}^* + *$	15.6	1.2×10^{13}	24.1	3.4×10^{13}
$\mathrm{M12}\ \mathrm{CH_3O}{*} + \mathrm{H}{*} \rightarrow \mathrm{CH_3OH}{*} + {*}$	16.8	2.7×10^{13}	7.1	6.8×10 ¹²
M13 CH ₃ OH* \rightarrow CH ₃ OH(g) + *	4.6	2.1×10^{17}	0.0	1.3×10^{3}
$M14 \text{ CH}_3*+\text{CHO}*{\rightarrow}\text{CH}_3\text{CHO}*+*$	27.7	5.0×10 ¹³	30.0	7.4×10^{13}
$M15 \text{ CH}_3\text{CHO}* + \text{H}* \rightarrow \text{CH}_3\text{CH}_2\text{O}* + *$	11.4	3.4×10^{13}	20.1	2.7×10^{13}
$M16 \text{ CH}_3\text{CH}_2\text{O}^* + \text{H}^* \rightarrow \text{CH}_3\text{CH}_2\text{OH}^* + *$	17.3	2.3×10^{13}	8.9	7.2×10^{12}

$M17 \text{ CH}_3\text{CH}_2\text{OH}* \rightarrow \text{CH}_3\text{CH}_2\text{OH}(g) + *$	6.8	2.0×10^{18}	0.0	1.3×10^{3}
M18 O* + H* \rightarrow OH* + *	27.7	1.9×10^{13}	28.8	5.6×10^{13}
$\mathrm{M19~OH}^{*} + \mathrm{H}^{*} \rightarrow \mathrm{H_2O}^{*} + ^{*}$	14.0	7.2×10^{12}	12.7	6.1×10^{8}
$M20 \text{ H}_2\text{O}^* \rightarrow \text{H}_2\text{O}(g) + *$	8.99	9.8×10 ⁸	0.0	9.9×10 ⁸

Table S13. Elementary Reaction Steps and Kinetic Parameters for Ethanol Reaction onFe₃Pd₆/Fe(100) in This Work at 483 K

reaction	$E_{a} (eV)$	А	$E_{\rm a}^{-1}({\rm eV})$	A-1
M1 CO(g) + * \rightarrow CO*	0.0	5.3×10 ³	30.8	7.1×10 ¹⁷
$M2 H_2(g) + * \rightarrow H_2 *$	0.0	6.5×10^{3}	15.0	7.9×10^{14}
M3 $H_2^* \rightarrow H^* + H^*$	6.9	1.1×10^{12}	14.1	9.1×10 ¹²
M4 CO* + H* \rightarrow HCO* + *	17.8	1.1×10^{13}	9.8	1.7×10^{13}
M5 HCO* + * \rightarrow CH* + O*	23.7	1.3×10^{13}	25.3	1.9×10^{13}
$M6 \text{ CH}^* + \text{H}^* \rightarrow \text{CH}_2^* + *$	17.5	1.3×10^{13}	4.1	8.6×10 ¹²
$M7 \text{ CH}_2* + \text{H}^* \rightarrow \text{CH}_3* + *$	14.9	1.1×10^{13}	20.7	$7.6 imes 10^{12}$
$\mathrm{M8}~\mathrm{CH_3}^* + \mathrm{H}^* \rightarrow \mathrm{CH_4}^* + *$	18.3	2.0×10^{13}	23.3	2.8×10^{12}
$M9 \text{ CH}_4^* \rightarrow \text{CH}_4(g) + *$	1.9	1.3×10^{16}	0.0	2.3×10^{3}
$\rm M10\;HCO^{*} + H^{*} \rightarrow CH_{2}O^{*} + *$	13.4	1.4×10^{13}	10.5	1.3×10^{13}
$\mathrm{M11}\ \mathrm{CH_2O^*} + \mathrm{H^*} \rightarrow \mathrm{CH_3O^*} + \mathrm{*}$	13.5	2.1×10^{13}	22.4	9.1×10 ¹²
$\mathrm{M12}\ \mathrm{CH_3O}^* + \mathrm{H}^* \rightarrow \mathrm{CH_3OH}^* + *$	14.8	1.0×10^{13}	5.1	7.1×10^{12}
$\mathrm{M13}\ \mathrm{CH_3OH}^* \to \mathrm{CH_3OH}(g) + *$	8.2	3.6×10^{17}	0.0	1.6×10^{3}
M14 CH ₃ * + CHO* \rightarrow CH ₃ CHO* + *	18.9	3.0×10 ¹³	34.8	2.7×10^{13}
$M15 \text{ CH}_3\text{CHO}* + \text{H}* \rightarrow \text{CH}_3\text{CH}_2\text{O}* + *$	10.7	3.1×10^{13}	18.8	2.2×10^{13}
$\rm M16~CH_3CH_2O^{*} + H^{*} \rightarrow \rm CH_3CH_2OH^{*} + *$	19.3	2.0×10^{13}	8.3	6.9×10 ¹²
M17 CH ₃ CH ₂ OH* \rightarrow CH ₃ CH ₂ OH(g) + *	11.0	2.0×10^{18}	0.0	1.3×10^{3}
M18 O* + H* \rightarrow OH* + *	31.8	1.9×10 ¹³	32.8	5.6×10 ¹³
$\mathrm{M19}~\mathrm{OH}^{*} + \mathrm{H}^{*} \rightarrow \mathrm{H_2O}^{*} + ^{*}$	23.8	7.2×10^{12}	22.7	6.1×10^{8}
$M20 \text{ H}_2\text{O}^* \rightarrow \text{H}_2\text{O}(g) + *$	8.99	9.8×10 ⁸	0.0	9.9×10 ⁸