Electronic supplementary information (ESI)

Selective resonance Raman enhancement of large amplitude inter-ring vibrations of $[3_4](1,2,4,5)$ cyclophane radical cation; a model of π -stacked dimer radical ions

Hajime Okajima*a, Teruo Shinmyozu^b and Akira Sakamoto*a

- ^a Department of Chemistry and Biological Science, College of Science and Engineering, Aoyamna Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan.
- ^b Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.

Fig. S1 Numbering of atoms for [3₄](1,2,4,5)cyclophane

	Bond lengths/Å and angles/deg				
Definitions	Neutral Radical cation				
	S ₀ [D _{2h}]	S ₀ [D ₂] (B)	$S_{2}[D_{2}](C)$	B - A	C - B
$R(C_{1a}C_{2a})$	1.398	1.395	1.396	-0.003	0.001
$R(C_{1a}C_{3b})$		1.394	1.395	-0.004	0.001
$R(C_{2a}C_{3a})$	1.408	1.435	1.434	0.027	-0.001
$R(C_{2a}C_{4a})$	1.522	1.511	1.514	-0.010	0.002
$R(C_{3a}C_{5a})$		1.511	1.513	-0.011	0.002
$R(C_{4a}C_{6a})$	1.550	1.550	1.557	0.000	0.007
$R(C_{6a}C_{5a'})$		1.551	1.556	0.001	0.006
$R(C_{1a}H_{1a})$	1.087	1.085	1.086	-0.002	0.000
$R(C_{4a}H_{2a})$	1.091	1.089	1.089	-0.002	0.000
$R(C_{5a}H_{4a})$		1.089	1.089	-0.002	0.000
$R(C_{4a}H_{3a})$	1.097	1.096	1.096	0.000	-0.001
$R(C_{5a}H_{5a})$		1.096	1.095	-0.001	-0.001
$R(C_{6a}H_{6a})$	1.096	1.093	1.094	-0.003	0.000
$R(C_{6a}H_{7a})$	1.094	1.093	1.092	-0.001	-0.001
$A(C_{2a}C_{1a}C_{3b})$	123.696	123.082	122.895	-0.614	-0.187
$A(C_{1a}C_{2a}C_{3a})$	117.856	118.042	118.090	0.186	0.049
$A(C_{1a}C_{2a}C_{4a})$	117.599	118.101	117.951	0.502	-0.150
$A(C_{1b}C_{3a}C_{5a})$		118.069	117.858	0.471	-0.212
$A(C_{3a}C_{2a}C_{4a})$	124.247	123.779	123.620	-0.468	-0.159
$A(C_{2a}C_{3a}C_{5a})$		123.762	123.611	-0.486	-0.151
$A(C_{2a}C_{4a}C_{6a})$	114.678	113.849	114.538	-0.829	0.690
$A(C_{3a}C_{5a}C_{6a'})$		113.939	114.541	-0.739	0.601
$A(C_{4a}C_{6a}C_{5a'})$	117.769	115.919	119.203	-1.850	3.284
$A(C_{2a}C_{1a}H_{1a})$	117.888	118.259	118.317	0.371	0.058
$A(C_{3a}C_{1b}H_{1b})$		118.163	118.151	0.275	-0.012
$D(C_{1a}C_{2a}C_{3a}C_{1b})$	0	0.694	0.833	0.694	0.140
$D(\mathrm{C}_{4\mathrm{a}}\mathrm{C}_{2\mathrm{a}}\mathrm{C}_{3\mathrm{a}}\mathrm{C}_{5\mathrm{a}})$	0	0.390	0.621	0.390	0.231
$D(C_{1a}C_{2a}C_{3a}C_{5a})$	173.566	177.108	173.793	3.541	-3.315
$-D(C_{1b}C_{3a}C_{2a}C_{4a})$		176.024	172.338	2.458	-3.686
$D(C_{3b}C_{1a}C_{2a}C_{4a})$	164.979	166.116	162.455	1.136	-3.661
$-D(C_{2b}C_{1b}C_{3a}C_{5a})$		166.536	163.103	1.557	-3.433
$D(\mathbf{C}_{2a}\mathbf{C}_{1a}\mathbf{C}_{3b}\mathbf{C}_{2b})$	9.021	10.086	10.267	1.065	0.180
$-\overline{D(C_{3a}C_{1b}C_{2b}C_{3b})}$		10.792	11.109	1.770	0.318
$D(C_{2a}C_{3a}C_{1b}H_{1b})$	179.503	177.448	178.219	-2.056	0.771
$-D(C_{3a}C_{2a}C_{1a}H_{1a})$		178.146	179.047	-1.358	0.901

Table S1 Structural parameters (bond lengths, angles, and dihedral angles) calculated for the neutral species and the radical cations in the ground S₀ and excited S₂ states of [3₄](1,2,4,5)cyclophane. The numbering of atoms is defined in Fig. S1.

Fig. S2 Resonance Raman spectrum of $[3_4](1,2,4,5)$ cyclophane radical cation (red line) and a plot of squares of the inner products of the vibrational corrdinates and the atomic displacements from the S₀ to S₂ states (See the text) calculated for the radical cation (black bars).