Supporting Information

Contiguous multiple π -coordination of π -conjugated polyenes: chain-length dependent ¹³C NMR chemical shifts and bonding nature of polyene-(palladium chain) sandwich clusters

Mariko Yamane,^b Mitsuki Yamamshita,^a Koji Yamamoto,^a and Tetsuro Murahashi^{*a}

^a Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan.

^b Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.

Table of Contents

General Considerations	S3
Synthesis of $[Pd_4{Ph(CH=CH)_5Ph}_2][B(Ar^F)_4]_2$ (Pd4Pen)	S3
Synthesis of $[Pd_6{Ph(CH=CH)_7Ph}_2][B(Ar^F)_4]_2$ (Pd6Hep)	S4
Optimized structures	S5-21
$[Pd_3(C_8H_{10})_2]^{2+}$	S5-6
$[Pd_3(C_6H_8)_2(py)_2]^{2+}$	S7-8
$[Pd_2(C_6H_8)_2]^{2+}$	S9-10
$[Pd_4(C_{10}H_{12})_2]^{2+}$	S11-12
$[Pd_5(C_{12}H_{14})_2]^{2+}$	S13-14
$[Pd_3(s-cis-C_8H_{10})_2]^{2+}$	S15-16
$[Pd_{3}(HCN)_{8}]^{2+}$	S17-18
$[Pd_{3}(PhC_{8}H_{8}Ph)_{2}]^{2+}$	S19-21
References	S22

All manipulations were carried out under a nitrogen General Considerations. atmosphere using standard Schlenk techniques or dry-box technique. ¹H, ¹³C NMR spectra were recorded on either the 270- (JEOL GSX-270), 400- (JEOL GSX-400, JEOL ECP-400), or 600 MHz (Varian UNITY-INOVA 600) instruments. The chemical shifts were referenced to the residual resonances of deuterated solvents. Elemental analyses were performed in Analytical Center, Faculty of Engineering, Osaka Unless specified, all reagents were purchased from commercial suppliers University. and used without purification. CH₂Cl₂ was distilled from CaH₂ prior to use. 1,10diphenyl-1,3,5,7,9-decapentaene 1,14-diphenyl-1,3,5,7,9,11,13-(Pen) and tetradecaheptaene (Hep) were prepared according to the literature method,^{S1} and purified with Soxhlet's extractor prior to use. $Pd_2(dba)_3$, ^{S2} NaB(Ar^F)₄, ^{S3} and $[Pd_2(CH_3CN)_6][BF_4]_2$,^{S4} were prepared according to the literature. $[Pd_m{Ph(CH=CH)_{m+1}Ph}_2][B(Ar^F)_4]_2$ (m = 3, Pd3Tet; m = 5, Pd5Hex) were prepared according to the literature.⁸⁵

Synthesis of $[Pd_4{Ph(CH=CH)_5Ph}_2][B(Ar_f)_4]_2$ (Pd4Pen): To a suspension of [Pd₂(CH₃CN)₆][BF₄]₂ (343 mg, 0.543 mmol) in CH₂Cl₂ was added 1,10-diphenyl-1,3,5,7,9-decapentaene (Pen) (486 mg, 1.71 mmol) and Pd₂(dba)₃ (572 mg, 0.553 mmol). The suspension was stirred overnight at room temperature. To the resultant orange suspension was added NaB(Ar^F)₄ (962 mg, 1.09 mmol), and the mixture was stirred for 15 min at room temperature. Then, the reaction mixture was filtered and crystallization from CH₂Cl₂/n-hexane gave orange powders of Pd4Pen (1.09 g, 74%) yield). mp. 280 °C (decomposed). ¹H NMR (CD₂Cl₂) for meso isomer: $\delta = 7.66$ (br, 16H, B(Ar^F)₄), 7.49 (br s, 8H, B(Ar^F)₄), 7.45 (m, 4H, p-Ph), 7.10 (t, J = 7.8 Hz, 8H, m-Ph), 6.94 (d, J = 7.2 Hz, 8H, o-Ph), 6.30 (d, J = 13.5 Hz, 4H, H₁), 5.30 (dd, J = 13.8 Hz, J = 10.8 Hz, 4H, H₂), 3.06 (m, 4H, H₃), 3.00 (m, 4H, H₄), 2.82 (m, 4H, H₅). ¹H NMR (CD_2Cl_2) for rac isomer: $\delta = 7.66$ (br, 16H, B(Ar^F)₄), 7.49 (brs, 8H, B(Ar^F)₄), 7.47 (m, 4H, *p*-Ph), 7.31 (t, *J* = 7.8 Hz, 8H, *m*-Ph), 7.12 (d, *J* = 7.0 Hz, 8H, *o*-Ph), 5.71 (dd, *J* = 13.6 Hz, J = 11.1 Hz, 4H, H₂), 5.51 (d, J = 13.6 Hz, 4H, H₁), 3.13 (m, 4H, H₄), 2.81 (m, 4H, H₅), 2.69 (m, 4H, H₃). ${}^{13}C{}^{1}H$ NMR data are shown in Tables 1 and 2. Anal. Calcd for Pd₄C₁₀₈H₆₄B₂F₄₈: C, 47.64; H, 2.37. Found: C, 47.40; H, 2.52.

Synthesis of [Pd₆{Ph(CH=CH)₇Ph}₂][B(Ar_f)₄]₂ (Pd6Hep): To a suspension of $[Pd_2(CH_3CN)_6][BF_4]_2$ (155 mg, 0.245 mmol) in CH_2Cl_2 was added 1,14-diphenyl-1,3,5,7,9,11,13-tetradecaheptaene (Hep) (228 mg, 0.679 mmol) and Pd₂(dba)₃ (503 mg, 0.486 mmol). The suspension was stirred for 2 days at room temperature. To the resultant orange-brown suspension was added NaB(ArF)₄ (435 mg, 0.491 mmol) and the mixture was stirred for 15 min at room temperature. Then, the reaction mixture was filtered and crystallization from CH₂Cl₂/n-hexane gave orange powders of Pd6Hep (395 mg, 53% yield). ¹H NMR (CD₂Cl₂) for meso isomer: $\delta = 7.65$ (br, 16H, B(Ar^F)₄), 7.42 (br, 8H, B(Ar^F)₄), 7.35 (m, 4H, *p*-Ph), 7.10 (t, J = 7.8 Hz, 8H, *m*-Ph), 6.99 (d, J =7.8 Hz, 8H, o-Ph), 6.03 (d, J = 13.2 Hz, 4H, H₁), 5.32 (overlap with solvent residual, 4H, H₂), 3.24 (m, 4H, H₄), 3.24 (m, 4H, H₆), 2.84 (m, 4H, H₇), 2.71 (m, 4H, H₃), 2.46 (m, 4H, H₅). ¹H NMR (CD₂Cl₂) for rac isomer: $\delta = 7.65$ (br, 16H, B(Ar^F)₄), 7.42 (br, 8H, $B(Ar^{F})_{4}$), 7.39 (m, 4H, p-Ph), 7.33 (t, J = 7.8 Hz, 8H, m-Ph), 7.17 (d, J = 7.8 Hz, 8H, o-Ph), 5.58 (dd, J = 13.8 Hz, J = 11.7 Hz, 4H, H₂), 5.18 (d, J = 13.8 Hz, 4H, H₁), 3.18 (m, $4H, H_4$, 3.13 (m, $4H, H_6$), 3.00 (m, $4H, H_7$), 2.61 (m, $4H, H_5$), 2.46 (m, $4H, H_3$). $^{13}C{^{1}H}$ NMR data are shown in Tables 1 and 2. Anal. Calcd for Pd₆C₁₁₆H₇₂B₂F₄₈: C, 44.09; H, 2.47. Found: C, 44.30; H, 2.49.

Symbol	Х	Y	Z
С	-0.6104262	-2.0863955	0.3592251
С	0.6115333	-2.0858785	-0.3602578
С	-0.6106269	2.0864074	0.3591695
С	0.6112597	2.0855949	-0.3604030
Pd	-0.0003607	-0.0000517	0.0003947
Н	0.5940809	-2.2199604	-1.4451647
Н	0.5937634	2.2195934	-1.4453184
Н	-0.5930295	2.2218482	1.4439072
Н	-0.5929625	-2.2218111	1.4439666
С	-1.8849381	2.0454440	-0.2988301
Н	-1.9062003	2.1254246	-1.3891479
С	1.8855417	2.0459274	0.2978045
Н	1.9067612	2.1271349	1.3880377
С	-1.8846551	-2.0453561	-0.2989243
Н	-1.9057829	-2.1252274	-1.3892474
С	1.8857764	-2.0461289	0.2979784
Н	1.9069814	-2.1273321	1.3882131
С	-3.1208254	-2.0884367	0.4198319
Н	-3.1114390	-2.2804570	1.4931518
С	3.1218813	-2.0879586	-0.4208861
Н	3.1126264	-2.2789237	-1.4944003
С	3.1216151	2.0882182	-0.4210906
Н	3.1122232	2.2791950	-1.4946016
С	-3.1210108	2.0884571	0.4200929
Н	-3.1115677	2.2806648	1.4933791
Pd	2.7896489	0.0000050	-0.0005428
Pd	-2.7902263	0.0000129	0.0013238
С	-4.2952222	1.6220430	-0.1973611
Н	-4.4016923	1.6505579	-1.2812029
С	4.2955219	1.6219914	0.1968761
Н	4.4017745	1.6512395	1.2807231
С	4.2956042	-1.6215048	0.1972165
Н	4.4017484	-1.6508238	1.2810717
С	-4.2949989	-1.6222790	-0.1979014
Н	-4.4012093	-1.6507267	-1.2817704
Н	-5.2116356	-1.5651753	0.3808567
Н	-5.2117329	1.5647490	0.3815718
Н	5.2121994	-1.5627825	-0.3814543
Н	5.2120672	1.5634965	-0.3818974

Table S1. Cartesian coordinates (in Å) of the optimized geometry of $[Pd_3(C_8H_{10})_2]^{2+}$.

Figure S1. The optimized geometry of $[Pd_3(C_8H_{10})_2]^{2+}$.

Pd1–Pd2	2.790	C1–C2	1.406
Pd1-C1	2.222	C2–C3	1.431
Pd1–C2	2.156	С3-С4	1.435
Pd1–C3	2.257	C4–C4*	1.418
Pd2-C4	2.203	Pd1–Pd2–Pd1	180.0

Table S2. Selected bond lengths (Å) and angles (°) of $[Pd_3(C_8H_{10})_2]^{2+}$.

Table S3. Cartesian coordinates (in Å) of the optimized geometry of $[Pd_3(C_6H_8)_2(py)_2]^{2+}$.

Symbol	Х	Y	Z
С	0.3440008	-0.6151947	2.0567973
С	-0.3440008	0.6151947	2.0567973
С	0.3440008	-0.6151947	-2.0567973
С	-0.3440008	0.6151947	-2.0567973
Pd	0.0000000	0.0000000	0.0000000
Н	-1.4291761	0.6208693	2.1876251
Н	-1.4291761	0.6208693	-2.1876251
Н	1.4291761	-0.6208693	-2.1876251
Н	1.4291761	-0.6208693	2.1876251
С	-0.3440008	-1.8818934	-2.0742123
Н	-1.4302389	-1.8695540	-2.1756228
С	0.3440008	1.8818934	-2.0742123
Н	1.4302389	1.8695540	-2.1756228
С	-0.3440008	-1.8818934	2.0742123
Н	-1.4302389	-1.8695540	2.1756228
С	0.3440008	1.8818934	2.0742123
Н	1.4302389	1.8695540	2.1756228
С	0.3326768	-3.1015167	2.1448715
Н	1.4101567	-3.1137512	2.3057061
Н	-0.2107752	-3.9975828	2.4270786
С	-0.3326768	3.1015167	2.1448715
Н	-1.4101567	3.1137512	2.3057061
Н	0.2107752	3.9975828	2.4270786
С	-0.3326768	3.1015167	-2.1448715
Н	-1.4101567	3.1137512	-2.3057061
Н	0.2107752	3.9975828	-2.4270786
С	0.3326768	-3.1015167	-2.1448715
Н	1.4101567	-3.1137512	-2.3057061
Н	-0.2107752	-3.9975828	-2.4270786
Pd	-0.0859132	2.8258097	0.0000000
Pd	0.0859132	-2.8258097	0.0000000
С	0.8744220	5.6768127	0.0000000
С	-1.4547105	5.5337108	0.0000000
С	0.8234490	7.0700869	0.0000000
Н	1.8202785	5.1435068	0.0000000
С	-1.5743960	6.9225314	0.0000000
Н	-2.3279074	4.8887192	0.0000000
С	-0.4192697	7.7088834	0.0000000
Н	1.7495390	7.6363945	0.0000000
Н	-2.5627628	7.3713821	0.0000000
Н	-0.4859876	8.7927440	0.0000000
С	1.4547105	-5.5337108	0.0000000

С	-0.8744220	-5.6768127	0.0000000
С	1.5743960	-6.9225314	0.0000000
Н	2.3279074	-4.8887192	0.0000000
С	-0.8234490	-7.0700869	0.0000000
Н	-1.8202785	-5.1435068	0.0000000
С	0.4192697	-7.7088834	0.0000000
Н	2.5627628	-7.3713821	0.0000000
Н	-1.7495390	-7.6363945	0.0000000
Н	0.4859876	-8.7927440	0.0000000
Ν	-0.2482884	4.9187513	0.0000000
Ν	0.2482884	-4.9187513	0.0000000

Figure S2. The optimized geometry of $[Pd_3(C_6H_8)_2(py)_2]^{2+}$.

Pd1–Pd2	2.827	C1–C2	1.397
Pd1–N1	2.099	C2–C3	1.442
Pd1-C1	2.177	C3–C3*	1.410
Pd1–C2	2.319	Pd1-Pd2-Pd1*	180.0
Pd2–C3	2.174	N1–Pd1–Pd2	177.3

Table S4. Selected bond lengths (Å) and angles (°) of $[Pd_3(C_6H_8)_2(py)_2]^{2+}$.

Symbol	Х	Y	Z
Н	-0.8281447	3.2794792	1.6044849
Н	0.9347113	3.8317039	1.4516048
С	0.6775342	1.7839388	2.0763817
Н	1.7408636	1.6199577	2.2542589
С	-0.2284912	0.6785367	2.0843178
Н	-1.3011503	0.8682456	2.1838761
С	0.2284912	-0.6785367	2.0843178
Н	1.3011503	-0.8682456	2.1838761
С	-0.6775342	-1.7839388	2.0763817
Н	-1.7408636	-1.6199577	2.2542589
С	-0.2284912	-3.0150305	1.5673818
Н	0.8281447	-3.2794792	1.6044849
Н	-0.9347113	-3.8317039	1.4516048
С	0.2284912	3.0150305	-1.5673818
Н	-0.8281447	3.2794792	-1.6044849
Н	0.9347113	3.8317039	-1.4516048
С	0.6775342	1.7839388	-2.0763817
Н	1.7408636	1.6199577	-2.2542589
С	-0.2284912	0.6785367	-2.0843178
Н	-1.3011503	0.8682456	-2.1838761
С	0.2284912	-0.6785367	-2.0843178
Н	1.3011503	-0.8682456	-2.1838761
С	-0.6775342	-1.7839388	-2.0763817
Н	-1.7408636	-1.6199577	-2.2542589
С	-0.2284912	-3.0150305	-1.5673818
Н	0.8281447	-3.2794792	-1.6044849
Н	-0.9347113	-3.8317039	-1.4516048
Pd	0.1633514	1.4249824	0.0000000
Pd	-0.1633514	-1.4249824	0.0000000

Table S5. Cartesian coordinates (in Å) of the optimized geometry of $[Pd_2(C_6H_8)_2]^{2+}$.

Figure S3. The optimized geometry of $[Pd_2(C_6H_8)_2]^{2+}$.

Pd1-Pd1*	2.869	C1–C2	1.406
Pd1–C1	2.234	C2-C3	1.429
Pd1–C2	2.169	C3–C3*	1.432
Pd1–C3	2.248		

Table S6. Selected bond lengths (Å) of $[Pd_2(C_6H_8)_2]^{2+}$.

Symbol	Х	Y	Z
С	-0.2353673	5.5679319	1.6556291
Н	-1.3200495	5.6650355	1.6709297
С	0.3847712	4.3858800	2.0997456
Н	1.4546331	4.3837851	2.3108680
С	-0.3138785	3.1378250	2.0324470
С	0.3551022	1.8721630	2.1004940
С	-0.3407755	0.6353419	2.0527365
С	0.3407755	-0.6353419	2.0527365
С	-0.3551022	-1.8721630	2.1004940
С	0.3138785	-3.1378250	2.0324470
С	-0.3847712	-4.3858800	2.0997456
С	0.2353673	-5.5679319	1.6556291
Н	0.3353161	6.4910372	1.6405895
Н	-1.4060429	3.1465469	2.0789703
Н	1.4368264	1.8676276	2.2585206
Н	-1.4276720	0.6324022	2.1708435
Н	1.4276720	-0.6324022	2.1708435
Н	-1.4368264	-1.8676276	2.2585206
Н	1.4060429	-3.1465469	2.0789703
Н	-1.4546331	-4.3837851	2.3108680
Н	1.3200495	-5.6650355	1.6709297
Н	-0.3353161	-6.4910372	1.6405895
С	-0.2353673	5.5679319	-1.6556291
Н	-1.3200495	5.6650355	-1.6709297
С	0.3847712	4.3858800	-2.0997456
Н	1.4546331	4.3837851	-2.3108680
С	-0.3138785	3.1378250	-2.0324470
С	0.3551022	1.8721630	-2.1004940
С	-0.3407755	0.6353419	-2.0527365
С	0.3407755	-0.6353419	-2.0527365
С	-0.3551022	-1.8721630	-2.1004940
С	0.3138785	-3.1378250	-2.0324470
С	-0.3847712	-4.3858800	-2.0997456
С	0.2353673	-5.5679319	-1.6556291
Н	0.3353161	6.4910372	-1.6405895
Н	-1.4060429	3.1465469	-2.0789703
Н	1.4368264	1.8676276	-2.2585206
Н	-1.4276720	0.6324022	-2.1708435
Н	1.4276720	-0.6324022	-2.1708435
Н	-1.4368264	-1.8676276	-2.2585206
Н	1.4060429	-3.1465469	-2.0789703
Н	-1.4546331	-4.3837851	-2.3108680

Table S7. Cartesian coordinates (in Å) of the optimized geometry of $[Pd_4(C_{10}H_{12})_2]^{2+}$.

S11

Н	1.3200495	-5.6650355	-1.6709297
Н	-0.3353161	-6.4910372	-1.6405895
Pd	0.0174586	4.1225630	0.0000000
Pd	-0.0174586	-4.1225630	0.0000000
Pd	-0.0279625	-1.3530866	0.0000000
Pd	0.0279625	1.3530866	0.0000000

Figure S4. The optimized geometry of $[Pd_4(C_{10}H_{12})_2]^{2+}$.

Table S8. Selected bond lengths (Å) and angles (°) of $[Pd_4(C_{10}H_{12})_2]^{2+}$.

Pd1–Pd2	2.770	C1–C2	1.407
Pd2–Pd2*	2.707	C2-C3	1.432
Pd1-C1	2.212	C3–C4	1.433
Pd1–C2	2.148	C4–C5	1.420
Pd1–C3	2.283	C5–C5*	1.442
Pd2-C4	2.188	Pd1-Pd2-Pd2*	178.6
Pd2–C5	2.206	Pd1*-Pd2*-Pd2	178.6

Symbol	Х	Y	Z
С	-0.622373	6 -2.0712417	0.3424991
С	0.622513	3 -2.0712129	-0.3419653
С	-0.622535	4 2.0702958	0.3422216
С	0.622499	8 2.0701309	-0.3420584
Pd	-0.000021	5 -0.0005487	0.0001214
Н	0.631363	2 -2.2140375	-1.4258894
Н	0.631527	5 2.2129915	-1.4259752
Н	-0.631546	7 2.2133417	1.4261122
Н	-0.631322	3 -2.2142587	1.4263887
С	-1.891265	1 2.0363731	-0.3435143
Н	-1.882719	5 2.1239969	-1.4332751
С	1.891233	2 2.0361733	0.3436767
Н	1.882711	9 2.1239061	1.4334258
С	-1.891154	3 -2.0366938	-0.3431514
Н	-1.882659	4 -2.1243863	-1.4329068
С	1.891382	9 -2.0371052	0.3435353
Н	1.883083	2 -2.1247510	1.4332940
С	-3.135632	7 -2.1114720	0.3412928
Н	-3.135764	8 -2.2941032	1.4191510
С	3.135678	1 -2.1118189	-0.3411732
Н	3.135668	9 -2.2944809	-1.4190223
С	3.135668	9 2.1111842	-0.3407835
Н	3.135752	3 2.2938908	-1.4186300
С	-3.135756	1 2.1113976	0.3408799
Н	-3.135895	6 2.2940895	1.4187282
Pd	2.683616	6 -0.0003577	-0.0546776
Pd	-2.683621	5 -0.0000567	0.0548336
С	-4.397248	9 2.0215589	-0.3306660
Н	-4.400428	4 2.0437167	-1.4234712
С	4.397209	5 2.0215243	0.3307060
Н	4.400412	7 2.0437675	1.4235085
С	4.397258	6 -2.0210191	0.3300908
Н	4.400635	6 -2.0433507	1.4228916
С	-4.397119	2 -2.0211319	-0.3301817
Н	-4.400347	8 -2.0434650	-1.4229841
С	5.652210	2 2.1064727	-0.3560847
Н	5.653204	6 2.3319189	-1.4231195
С	6.840494	5 1.6779013	0.2644447
Н	6.933079	3 1.6843258	1.3494236
Н	7.766449	2 1.6934462	-0.3013490
С	-5.652331	9 2.1062969	0.3559955
Н	-5.653493	3 2.3317247	1.4230321
С	-6.840517	1 1.6777418	-0.2647547

Table S9. Cartesian coordinates (in Å) of the optimized geometry of $[Pd_5(C_{12}H_{14})_2]^{2+}$.

S13

Н	-6.9329523	1.6842882	-1.3497465
Н	-7.7665494	1.6932041	0.3009140
С	-5.6522277	-2.1055234	0.3564918
Н	-5.6534041	-2.3307012	1.4235789
С	-6.8403840	-1.6770991	-0.2644102
Н	-6.9327219	-1.6839581	-1.3494076
Н	-7.7664348	-1.6923328	0.3012300
С	5.6522718	-2.1054032	-0.3567779
Н	5.6532523	-2.3305726	-1.4238681
С	6.8405446	-1.6769429	0.2638797
Н	6.9330942	-1.6837620	1.3488567
Н	7.7664812	-1.6922350	-0.3019457
Pd	5.4367130	0.0005161	-0.0232189
Pd	-5.4367517	0.0003484	0.0229393

Figure S5. The optimized geometry of $[Pd_5(C_{12}H_{14})_2]^{2+}$.

Pd1–Pd2	2.753	C1–C2	1.407
Pd2–Pd3	2.684	C2-C3	1.433
Pd1-C1	2.206	С3-С4	1.432
Pd1–C2	2.143	C4–C5	1.422
Pd1–C3	2.300	С5-С6	1.443
Pd2-C4	2.178	C6–C6*	1.421
Pd2–C5	2.221	Pd1–Pd2–Pd3	178.2
Pd3-C6	2.189	Pd2-Pd3-Pd2*	180.0

Table S10. Selected bond lengths (Å) and angles (°) of $[Pd_5(C_{12}H_{14})_2]^{2+}$.

Table S11. Cartesian coordinates (in Å) of the optimized geometry of $[{\sf Pd}_3({\sf s}\text{-cis-} C_8 H_{10})_2]^{2+}.$

Symbol	Х	Y	Z
С	0.7107269	2.0931904	0.9337462
С	-0.7122906	2.0938947	0.9304482
С	0.7130621	-2.0961649	0.9256763
С	-0.7116207	-2.0980052	0.9298187
Pd	-0.0000597	-0.0012663	0.9317835
Н	1.1953660	-2.2994245	1.8845485
Н	1.1930495	2.2947831	1.8928218
С	1.5668090	-2.0175983	-0.2213772
Н	1.1342299	-2.0458092	-1.2236497
С	1.5632341	2.0170104	-0.2155186
Н	1.1284312	2.0468003	-1.2166668
С	2.9872396	2.1002064	-0.0931323
Н	3.4269130	2.3367723	0.8765124
С	2.9906958	-2.0987885	-0.0951810
Н	3.4283926	-2.3362021	0.8751571
Pd	2.5714103	0.0005618	-0.2599664
С	3.8080818	-1.6221814	-1.1360694
Н	3.4491939	-1.6120769	-2.1643162
С	3.8030470	1.6271269	-1.1369514
Н	3.4414626	1.6177274	-2.1643048
Н	4.8797421	1.6032913	-0.9995019
Н	4.8843537	-1.5960761	-0.9956499
С	-1.5654363	-2.0209731	-0.2175198
С	-1.5650137	2.0197597	-0.2177286
С	-2.9892956	-2.1048888	-0.0918064
С	-3.8079837	-1.6308245	-1.1329952
С	-2.9890327	2.1015190	-0.0919905
С	-3.8061509	1.6296508	-1.1352750
Pd	-2.5706797	0.0017128	-0.2620899
Н	-1.1931908	-2.3031232	1.8885289
Н	-1.1953996	2.2952695	1.8892087
Н	-3.4267551	-2.3419602	0.8786450
Н	-4.8843459	-1.6070166	-0.9928189
Н	-4.8826404	1.6053188	-0.9963623
Н	-3.4458115	1.6221228	-2.1630392
Н	-1.1316710	2.0499254	-1.2194910
Н	-1.1322084	-2.0495416	-1.2193829
Н	-3.4489847	-1.6210559	-2.1612039
Н	-3.4274249	2.3362902	0.8786498

Figure S6. The optimized geometry of $[Pd_3(s-cis-C_8H_{10})_2]^{2+}$.

	• • •	U () E ()	· · · · ·
Pd1–Pd2	2.834	C1–C2	1.407
Pd1–C1	2.221	C2–C3	1.432
Pd1–C2	2.147	С3-С4	1.433
Pd1–C3	2.255	C4–C4*	1.423
Pd2–C4	2.212	Pd1–Pd2–Pd1	130.2

Table S12. Selected bond lengths (Å) and angles (°) of $[Pd_3(s-cis-C_8H_{10})_2]^{2+}$.

Symbol	Х	Y	Z	
Pd	0.0000000	0.0000000	2.6292498	
Pd	0.0000000	0.0000000	0.0000045	
Pd	0.0000000	0.0000000	-2.6292382	
Ν	0.0000000	0.0000000	4.8449170	
Ν	-1.9470475	0.5283808	2.4736369	
Ν	1.9470475	-0.5283808	2.4736369	
Ν	-0.0000682	1.9838874	0.0000075	
Ν	0.0000682	-1.9838874	0.0000075	
Ν	-1.9470343	-0.5284596	-2.4736842	
Ν	0.0000000	0.0000000	-4.8449013	
Ν	1.9470343	0.5284596	-2.4736842	
С	0.0000000	0.0000000	6.0130209	
Н	0.0000000	0.0000000	7.0862343	
С	3.0732979	-0.8332480	2.5185361	
Н	4.1075942	-1.1135852	2.5642806	
С	-3.0732979	0.8332480	2.5185361	
Н	-4.1075942	1.1135852	2.5642806	
С	0.0001107	-3.1511568	-0.0000250	
Н	0.0001228	-4.2237356	0.0000303	
С	-0.0001107	3.1511568	-0.0000250	
Н	-0.0001228	4.2237356	0.0000303	
С	-3.0732667	-0.8333585	-2.5185467	
Н	-4.1075468	-1.1137572	-2.5642947	
С	3.0732667	0.8333585	-2.5185467	
Н	4.1075468	1.1137572	-2.5642947	
С	0.0000000	0.0000000	-6.0130058	
Н	0.0000000	0.0000000	-7.0862193	

Table S13. Cartesian coordinates (in Å) of the optimized geometry of $[Pd_3(HCN)_8]^{2+}$.

Figure S7. The optimized geometry of $[Pd_3(HCN)_8]^{2+}$.

Pd1–Pd2	2.629	Pd2-N4	1.984
Pd1–N1	2.216	Pd1-Pd2-Pd1*	180.0
Pd1–N2	2.023	N2-Pd1-Pd2-N4	74.8
Pd1–N3	2.023	N4-Pd2-Pd1*-N2*	74.8

Table S14. Selected bond lengths (Å) and angles (°) of $[Pd_3(HCN)_8]^{2+}$.

Table S15. Cartesian coordinates (in Å) of the optimized geometry of

 $[Pd_3(PhC_8H_8Ph)_2]^{2+}$.

Symbol	Х	Y	Z
С	-0.6397350	-2.1539630	0.3038290
С	0.6398370	-2.1540160	-0.3032120
С	-0.6584310	2.0223460	0.2610260
С	0.6582500	2.0223350	-0.2611040
Pd	-0.0000250	-0.0695460	0.0000880
Н	0.7139400	-2.2791590	-1.3870150
Н	0.8057970	2.1612250	-1.3354370
Н	-0.8059810	2.1612590	1.3353560
Н	-0.7138630	-2.2789690	1.3876450
С	-1.8223430	1.9667540	-0.5831320
Н	-1.6669550	2.0204620	-1.6646130
С	1.8221450	1.9666910	0.5830530
Н	1.6667600	2.0203460	1.6645350
С	-1.8601290	-2.1114650	-0.4560300
Н	-1.7955030	-2.2240890	-1.5422640
С	1.8602390	-2.1114450	0.4566190
Н	1.7956490	-2.2237470	1.5428850
С	-3.1393410	-2.1182140	0.1700450
Н	-3.1864210	-2.2733790	1.2477490
С	3.1394240	-2.1183150	-0.1694970
Н	3.1864410	-2.2737780	-1.2471590
С	3.1562510	2.0483290	0.0839660
Н	3.3364590	2.3088310	-0.9593750
С	-3.1564620	2.0483100	-0.0840550
Н	-3.3366880	2.3087920	0.9592820
Pd	2.7252360	-0.0510060	0.3268560
Pd	-2.7250700	-0.0509860	-0.3268940
С	-4.2244840	1.6309870	-0.9152330
Н	-4.0193430	1.6118560	-1.9909430
С	4.2243500	1.6311540	0.9151250
Н	4.0193090	1.6120720	1.9908560
С	4.2963060	-1.7170360	0.5418820
Н	4.2470320	-1.7679620	1.6342360
С	-4.2961540	-1.7170770	-0.5415060
Н	-4.2468030	-1.7682700	-1.6338440
С	-5.6256550	-1.6140380	0.0279650
С	-5.8851630	-1.7615090	1.4106910
С	-6.7053410	-1.3743660	-0.8499780
С	-7.1950970	-1.7386350	1.8820420
Н	-5.0770730	-1.9390080	2.1169340

S19

С	-8.0140930	-1.3408020	-0.3686040
Н	-6.5158000	-1.2730580	-1.9170210
C	-8.2626640	-1.5203560	0.9972910
Н	-7.3898340	-1.8860940	2.9410700
Н	-8.8392460	-1.1812210	-1.0568710
Н	-9.2840870	-1.5195110	1.3691600
С	5.6257870	-1.6140520	-0.0276860
C	5.8853850	-1.7626490	-1.4102780
C	6.7053950	-1.3733910	0.8500850
C	7.1953180	-1.7397650	-1.8816220
Н	5.0773870	-1.9411190	-2.1163730
C	8.0141420	-1.3398170	0.3687090
Н	6.5158010	-1.2712780	1.9170430
C	8.2628010	-1.5204260	-0.9970300
Н	7.3901320	-1.8881410	-2.9405090
Н	8.8392320	-1.1794530	1.0568680
Н	9.2842290	-1.5195950	-1.3688840
C	-5.6211350	1.6264140	-0.5348640
C	-6.5893720	1.8159900	-1.5462840
C	-6.0391060	1.4851180	0.8066210
С	-7.9358440	1.9587370	-1.2113410
Н	-6.2719590	1.9175060	-2.5830190
С	-7.3882470	1.6062300	1.1302180
Н	-5.3107400	1.2906480	1.5920340
С	-8.3382220	1.8490470	0.1255900
Н	-8.6710630	2.1465640	-1.9891330
Н	-7.7066450	1.5077970	2.1643210
Н	-9.3864020	1.9658720	0.3888160
С	5.6209720	1.6265690	0.5345840
С	6.0387420	1.4841020	-0.8068400
С	6.5893300	1.8173100	1.5456560
С	7.3878020	1.6051350	-1.1307920
Н	5.3102620	1.2886520	-1.5919120
С	7.9357120	1.9600410	1.2103310
Н	6.2720820	1.9197550	2.5823490
С	8.3378910	1.8491500	-0.1265600
Н	7.7060390	1.5057550	-2.1648530
Н	8.6710230	2.1488140	1.9878100
Н	9.3860140	1.9658810	-0.3900560

Figure S8. The optimized geometry of $[Pd_3(PhC_8H_8Ph)_2]^{2+}$.

Table S16. Selected bond lengths (Å) and angles (°) of $[Pd_3(PhC_8H_8Ph)_2]^{2+}$.

2.745	C1–C2	1.416
2.745	C2–C3	1.424
2.300	С3-С4	1.438
2.166	C4–C5	1.416
2.238	С5-С6	1.438
2.329	С6-С7	1.424
2.157	С7–С8	1.416
2.225	С9–С10	1.416
2.201	C10-C11	1.427
2.201	C11-C12	1.439
2.209	C12-C13	1.416
2.209	C13-C14	1.439
2.238	C14–C15	1.427
2.166	C15-C16	1.416
2.300	Pd1-Pd2-Pd3	179.2
2.225		
2.157		
2.329		
	2.745 2.745 2.300 2.166 2.238 2.329 2.157 2.225 2.201 2.201 2.201 2.209 2.209 2.209 2.209 2.209 2.238 2.166 2.300 2.225 2.157 2.329	2.745 C1-C2 2.745 C2-C3 2.300 C3-C4 2.166 C4-C5 2.238 C5-C6 2.329 C6-C7 2.157 C7-C8 2.201 C10-C11 2.201 C10-C11 2.209 C12-C13 2.209 C13-C14 2.238 C14-C15 2.166 C15-C16 2.300 Pd1-Pd2-Pd3 2.225 2.157 2.329 C13-C14

References

- S1 C. W. Spangler; R. K. McCoy; A. A. Dembek; L. S. Sapochak; B. D. Gates, J. Chem.
 Soc., Perkin Trans 1, 1989, 151.
- S2 T. Ukai; H. Kawazura; Y. Ishii; J. K. Bonnet; J. A. Ibers, *J. Organomet. Chem.* 1974, 65, 253.
- S3 (a) H. Kobayashi; A. Sonoda; H. Iwamoto; M. Yoshimura, *Chem. Lett.* 1981, *10*, 579.
 (b) H. Nishida; N. Takada; M. Yoshimura; T. Sonoda; H. Kobayashi, *Bull. Chem. Soc. Jpn.* 1984, *57*, 2600. (c) M. Brookhart; B. Grant; A. F. Volpe, *Organometallics* 1992, *11*, 3920. (d) N. A. Yakelis; R. G. Bergman, *Organometallics* 2005, *24*, 3579.
- S4 T. Murahashi; T. Nagai; T. Okuno; T. Matsutani; H. Kurosawa, *Chem. Commun.*2000, 1689.
- S5 T. Murahashi, E. Mochizuki, Y. Kai and H. Kurosawa, J. Am. Chem. Soc., 1999, 121, 10660.