ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Anionic Merocyanine Dyes Based on Thiazol-2-Hydrazides: Reverse Solvatochromism, Preferential Solvation and Multiparametric Approaches to Spectral Shifts

Arindam Mukhopadhyay,* Krishna J. Mandal and Jarugu Narasimha Moorthy* Department of Chemistry, Indian Institute of Technology, Kanpur 208016, INDIA

* Corresponding authors,

E-mail: arindam389@gmail.com (for AM) and moorthy@iitk.ac.in (for JNM)

CONTENTS

1.	UV-vis absorption spectra of THA1 and THA2 in different solvents	S2
2.	Spectrophotometric experiments to reveal the influence of counter cation	S3-S4
3.	Spectrophotometric experiments employed to discard the possibility of auto- aggregation of THA s	S5-S6
4.	Changes in ¹ H NMR signals of TH2 upon addition of TBAOH	S7
5.	Preferential solvation studies in binary solvent mixtures	S8-S10
6.	Kamlet-Taft and Catalán parameters for the solvents	S11
7.	Experimentally-determined and empirically-calculated E_T (dye) values of THA s using Catalán and Kamlet-Taft LSERs in different solvents	S12-S13
8.	Results of DFT calculations	S14-S19
9.	Results of NBO analyses	S20-S23
10.	References	S24

Figure S1. UV-vis absorption spectra of THA1 (50 μ M) in different solvents.

Figure S2. UV-vis absorption spectra of THA2 (50 µM) in different solvents.

Spectrophotometric Experiments to Reveal the Influence of Counter Cation. To investigate whether or not the anionic **THA** dyes form ion pair with the counter cation, UV-vis absorption spectra of the **THAs** (50 μ M) were recorded in the presence of excess of tetra*n*-butylammonium iodide, i.e., TBAI (concentration = 1 mM, i.e., 20 equivalents) in THF as a representative solvent. As shown below, the absorption maximum of both **THA1** (603 nm) and **THA2** (501 nm) was found to remain the same before and after the addition of TBAI. This experiment, thus, establishes the fact that the TBA cation doesn't form ion pair with the anionic **THA** dyes. Similar results were also obtained by Machado and co-workers.¹

Figure S3. UV-vis absorption spectra (50 μ M) of **THA1** (top) and **THA2** (bottom) in the absence (black line) and in the presence (red line) of TBAI (1 mM) in THF.

To further investigate the influence of other counter cation, such as K^+ , the deprotonation of **TH1**, a representative case, in THF (50 μ M) was carried out in the presence of aq. KOH (5 × 10⁴ M, i.e., 10 equivalents). The λ_{max} of the colored solution (**THA1**) in this case was found to be at 558 nm, which is 45 nm blue shifted when compared to that of the colored solution generated in the presence of TBAOH ($\lambda_{max} = 603$ nm). This suggests strong electrostatic interaction between the hydrazide anion and K⁺ cation. However, when this colored solution was treated with excess (5 × 10⁻³ M) of 18-crown-6, a highly selective receptor of K⁺, the absorption spectrum was found to be almost the same which is obtained in the presence of TBAOH (5 × 10⁻⁴ M) in THF. This compellingly attests to the fact that the TBA cation doesn't have any influence on the spectral properties of the anionic dyes. Similar results were also obtained by Machado and co-workers.¹

Figure S4. UV-vis absorption spectra of **THA1** in THF under different conditions. Red line: When the deprotonation of **TH1** (50 μ M) is carried out using TBAOH (5 × 10⁻⁴ M); Green line: When the deprotonation of **TH1** (50 μ M) is carried out using KOH (5 × 10⁻⁴ M); and Blue line: After addition of excess of 18-crown-6 (5 × 10⁻³ M) to the solution of **THA1** deprotonated with KOH. Notice that the absorption maxima of the red and blue lines are the same.

Spectrophotometric Experiments Employed to Discard the Possibility of Auto-Aggregation of THAs. To establish the fact that auto-aggregation of the THA dyes doesn't take place at the concentration (50 μ M) used for solvatochromic studies, we followed the methodology established by El Seoud and co-workers.² Accordingly, the absorbances of the solutions of the THAs were plotted with increasing concentration of the latter in the range of ca. 5×10^{-6} M to 7×10^{-5} M in three representative solvents, namely, THF, MeCN and MeOH. As shown below, all the plots of absorbance versus concentration were found to be linear with excellent goodness-of-fit (R² = 0.99) values. This means that Beer's law holds true for them and therefore, this establishes that self-aggregation of the THA dyes doesn't occur in this concentration range.

Figure S5. Linear plot of the absorbance (at the λ_{max}) versus concentration of THA1 in different solvents.

Figure S6. Linear plot of the absorbance (at the λ_{max}) versus concentration of THA2 in different solvents.

Changes in ¹H NMR Signals of TH2 upon Addition of TBAOH. The changes in the ¹H NMR signals of **TH2** upon addition of TBAOH are shown below. Accordingly one observes the following: i) the doublets (H_f and H_g) corresponding to 4-cyanophenyl ring undergo substantial upfield shifts (ca. 0.23-0.26 ppm); ii) while the singlet corresponding to the benzylidene proton (H_e) undergoes an upfield shift of ca. 0.20 ppm, the singlet proton of the thiazole ring (H_a) undergoes highest upfield shift of ca. 0.50 ppm; and iii) the protons of the phenyl ring (H_b , H_c and H_d) substituted at position 4 of the thiazole ring undergo only marginal upfield shifts.

Figure S7. ¹H NMR (500 MHz) spectra of **TH2** (0.03 M) in CD₃CN before (green) and after (red) addition of excess (ca. 10 molar equivalents) TBAOH.

Binary mixture of solvents	X ₂	X_2^L	X_1^L = (1 - X_2^L)	λ_{max} (nm)	\bar{v}_{12} (cm ⁻¹)	$\delta_{s2} = (X_2^{L} - X_2)$	<i>K</i> ₁₂
	0.0285	0.18854	0.81146	600	16666.67	0.16004	0.12628
	0.05543	0.293	0.707	592	16891.89	0.23758	0.14159
	0.10504	0.41395	0.58605	583	17152.66	0.30892	0.16616
	0.14969	0.49668	0.50332	577	17331.02	0.34699	0.1784
	0.22685	0.58114	0.41886	571	17513.13	0.3543	0.21147
	0.29117	0.6529	0.3471	566	17667.84	0.36173	0.21838
	0.34561	0.69657	0.30343	563	17761.99	0.35096	0.23006
	0.39228	0.7407	0.2593	560	17857.14	0.34842	0.22597
	0.43274	0.77039	0.22961	558	17921.15	0.33765	0.22737
	0.46815	0.80028	0.19972	556	17985.61	0.33214	0.21966
	0.4994	0.81532	0.18468	555	18018.018	0.31592	0.22597
acetonitrile (X_1)	0.52717	0.8304	0.1696	554	18050.54	0.30323	0.22772
methanol (X_2)	0.55203	0.84554	0.15446	553	18083.18	0.29351	0.22511
	0.56351	0.84554	0.15446	553	18083.18	0.28203	0.23583
	0.58679	0.86073	0.13927	552	18115.94	0.27394	0.22977
	0.61208	0.87598	0.12402	551	18148.82	0.2639	0.22339
	0.63965	0.89129	0.10871	550	18181.82	0.25163	0.21651
	0.66983	0.90665	0.09335	549	18214.94	0.23682	0.20888
	0.70298	0.92207	0.07793	548	18248.17	0.21908	0.20005
	0.7396	0.93754	0.06246	547	18281.53	0.19794	0.18922
	0.78023	0.93754	0.06246	547	18281.53	0.15731	0.23653
	0.82559	0.95307	0.04693	546	18315.02	0.12748	0.2331
	0.87655	0.9843	0.0157	544	18382.35	0.10775	0.11327
	0.93421	0.9843	0.0157	544	18382.35	0.05008	0.22653

Table S1. Preferential solvation study of **THA1** in a binary solvent mixture.

Binary mixture of solvents	X ₂	X_2^L	X_1^L = (1 - X_2^L)	λ_{max} (nm)	\bar{v}_{12} (cm ⁻¹)	$\delta_{s2} = (X_2^{L} - X_2)$	<i>K</i> ₁₂
	0.0285	0.12286	0.87714	498	20080.32	0.09436	0.20945
	0.05543	0.24821	0.75179	493	20283.97	0.19278	0.17774
	0.10504	0.32465	0.67535	490	20408.16	0.21961	0.24415
	0.14969	0.37613	0.62387	488	20491.80	0.22644	0.29199
	0.22685	0.42804	0.57196	486	20576.13	0.20119	0.39207
	0.29117	0.48037	0.51963	484	20661.15	0.1892	0.44435
	0.34561	0.53314	0.46686	482	20746.88	0.18753	0.46248
	0.39228	0.58635	0.41365	480	20833.33	0.19407	0.45538
	0.43274	0.61312	0.38688	479	20876.82	0.18038	0.48137
	0.46815	0.64	0.36	478	20920.50	0.17185	0.49513
	0.4994	0.667	0.333	477	20964.36	0.1676	0.49806
acetonitrile (X_1)	0.52717	0.6941	0.3059	476	21008.40	0.16693	0.49136
methanol (X_2)	0.55203	0.72133	0.27867	475	21052.63	0.1693	0.47608
	0.56351	0.74867	0.25133	474	21097.04	0.18516	0.4334
	0.58679	0.77612	0.22388	473	21141.64	0.18933	0.40964
	0.61208	0.80369	0.19631	472	21186.44	0.19161	0.38541
	0.63965	0.83138	0.16862	471	21231.42	0.19173	0.36004
	0.66983	0.85918	0.14082	470	21276.59	0.18935	0.33251
	0.70298	0.8871	0.1129	469	21321.96	0.18412	0.30121
	0.7396	0.91515	0.08485	468	21367.52	0.17555	0.26335
	0.78023	0.94331	0.05669	467	21413.27	0.16308	0.21336
	0.82559	0.94331	0.05669	467	21413.27	0.11772	0.28448
	0.87655	0.97159	0.02841	466	21459.22	0.09504	0.2076
	0.93421	0.97159	0.02841	466	21459.22	0.03738	0.41521

Table S2. Preferential solvation study of **THA2** in a binary solvent mixture.

Figure S8. Plot of (X_1^L/X_2^L) versus (X_1/X_2) in the acetonitrile/methanol binary mixture for the solvation of **THA1**. The red line signifies the case when the slope is 1, i.e., $K_{12} = 1$.

Figure S9. Plot of (X_1^L/X_2^L) versus (X_1/X_2) in the acetonitrile/methanol binary mixture for the solvation of **THA2**. The red line signifies the case when the slope is 1, i.e., $K_{12} = 1$.

	Kamlet-Taft Parameters			Catalán Parameters			
Solvent	α	β	π*	SA	SB	SP	SdP
tetrahydrofuran (THF)	0	0.55	0.58	0	0.48	0.56	0.66
ethyl acetate	0.00	0.45	0.45	0	0.54	0.65	0.60
chloroform	0.20	0.10	0.58	0.05	0.07	0.78	0.61
dichloromethane	0.13	0.10	0.82	0.04	0.17	0.76	0.76
1,2-dichloroethane	0.0	0.0	0.81	0.03	0.13	0.77	0.74
acetone	0.08	0.43	0.71	0	0.47	0.65	0.90
<i>N</i> , <i>N</i> -dimethylacetamide (DMA)	0.00	0.76	0.88	0.03	0.65	0.76	0.99
<i>N</i> , <i>N</i> -dimethylformamide (DMF)	0.00	0.69	0.88	0.03	0.61	0.76	0.98
<i>t</i> -butanol	0.42	0.93	0.41	0.14	0.93	0.63	0.73
dimethyl sulfoxide (DMSO)	0.00	0.76	1.00	0.07	0.65	0.83	1
acetonitrile	0.19	0.40	0.66	0.04	0.29	0.64	0.97
butan-1-ol	0.79	0.88	0.47	0.34	0.81	0.67	0.66
propan-2-ol	0.76	0.84	0.48	0.28	0.83	0.63	0.81
methanol	0.98	0.66	0.60	0.6	0.54	0.61	0.9
ethane-1,2-diol	0.90	0.52	0.92	0.72	0.53	0.78	0.91

 Table S3. Kamlet-Taft and Catalán parameters for the solvents used.

^{*a*} The numerical values of the parameters are taken from references 3-7.

Table S4. Experimentally-determined and empirically-calculated E_T (dye) values of **THA1** using Catalán and Kamlet-Taft LSERs in different solvents.

	$E_{\rm T}({\rm dye}) \ ({\rm kcal/mol})$					
Solvent	Experimental	Calculated from LSER				
	*	Catalán	Kamlet-Taft			
THF	47.41294	47.30201	46.20275			
ethyl acetate	47.57072	48.10488	46.20275			
chloroform	47.72955	47.73393	48.33359			
dichloromethane	46.86885	46.63101	47.14961			
1,2-dichloroethane	46.94581	46.67876	46.53698			
acetone	45.67093	46.09396	46.54312			
DMA	44.25697	44.66105	44.88609			
DMF	44.88226	44.75959	45.01838			
<i>t</i> -butanol	49.98252	48.62597	48.6947			
DMSO	44.25697	44.33599	44.51817			
acetonitrile	46.4878	46.30775	47.45734			
butan-1-ol	50.15789	50.87148	50.97401			
propan-2-ol	49.2931	49.5818	50.82688			
methanol	52.65193	52.64554	52.20759			
ethane-1,2-diol	52.36264	52.19712	50.97889			

Table S5. Experimentally-determined and empirically-calculated E_T (dye) values of **THA2** using Catalán and Kamlet-Taft LSERs in different solvents.

	$E_{\rm T}({\rm dye}) \ ({\rm kcal/mol})$					
Solvent	Experimental	Calculated from LSER				
	1	Catalán	Kamlet-Taft			
THF	57.06587	56.86821	55.79729			
ethyl acetate	56.72619	57.19804	55.99143			
chloroform	57.87449	57.45096	57.20398			
dichloromethane	57.29459	57.20117	56.75708			
1,2-dichloroethane	57.40964	57.16966	56.31194			
acetone	56.39053	56.97959	56.21304			
DMA	55.51456	56.45886	55.37377			
DMF	58.46626	56.50761	55.45641			
<i>t</i> -butanol	59.31535	57.76065	57.28667			
DMSO	55.51456	56.41779	55.30353			
acetonitrile	56.83897	57.41539	56.75922			
butan-1-ol	57.29459	59.13504	58.93017			
propan-2-ol	59.07025	58.73012	58.84022			
methanol	61.48387	61.18531	59.94548			
ethane-1,2-diol	61.48387	61.26517	59.57325			

Results of DFT Calculations

Center	Atomic	Atomic	Coord	linates (Angstro	oms)
Number	Number	Туре	Х	Y	Z
1	6	0	-5.583544	1.027250	-0.273009
2	6	0	-4.217679	0.854477	-0.002079
3	6	0	-3.440175	1.988774	0.271570
4	6	0	-4.015956	3.256325	0.284627
5	6	0	-5.375105	3.415827	0.021959
6	6	0	-6.156119	2.294265	-0.258826
7	1	0	-6.203339	0.170788	-0.512660
8	1	0	-2.384246	1.860926	0.471305
9	1	0	-3.399554	4.122032	0.500265
10	1	0	-5.822076	4.403452	0.030294
11	1	0	-7.212577	2.408075	-0.474834
12	6	0	-3.593218	-0.482324	0.002213
13	6	0	-4.251071	-1.681084	0.006201
14	6	0	-1.822849	-1.806376	0.024016
15	1	0	-5.309457	-1.881648	0.025095
16	7	0	-2.209413	-0.576040	0.017878
17	16	0	-3.120938	-3.006374	0.015452
18	7	0	-0.513599	-2.245840	0.029904
19	1	0	-0.338624	-3.246591	0.048283
20	7	0	0.516356	-1.386419	0.012858
21	6	0	1.706109	-1.870070	0.025437
22	1	0	1.884538	-2.951973	0.050685
23	6	0	2.879173	-1.001567	0.006920
24	6	0	4.159344	-1.578652	0.028963
25	6	0	2.762609	0.400500	-0.032695
26	6	0	5.299565	-0.786854	0.013551
27	1	0	4.261908	-2.657988	0.058693
28	6	0	3.892980	1.199328	-0.048517
29	1	0	1.776138	0.845637	-0.050942
30	6	0	5.150937	0.595394	-0.024910
31	1	0	6.290570	-1.218560	0.030629
32	1	0	3.821091	2.277776	-0.078876
33	7	0	6.355908	1.444447	-0.041052
34	8	0	6.196872	2.659362	-0.074852
35	8	0	7.447609	0.886357	-0.019499

 Table S6. Cartesian coordinates for the optimized structure of TH1.

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	-5.173666	1.231980	-0.296868	
2	6	0	-3.841164	0.900347	0.000445	
3	6	0	-2.956731	1.946042	0.309810	
4	6	0	-3.392178	3.268393	0.334181	
5	6	0	-4.720084	3.582222	0.047257	
6	6	0	-5.608417	2.553003	-0.269704	
7	1	0	-5.874416	0.449780	-0.566165	
8	1	0	-1.926882	1.698020	0.531768	
9	1	0	-2.689059	4.058040	0.578589	
10	1	0	-5.058062	4.612828	0.064322	
11	1	0	-6.642551	2.781793	-0.506612	
12	6	0	-3.362155	-0.495708	-0.004982	
13	6	0	-4.164269	-1.608883	-0.011819	
14	6	0	-1.720412	-2.027720	0.027027	
15	1	0	-5.241749	-1.653012	0.000482	
16	7	0	-2.005855	-0.737616	0.020355	
17	16	0	-3.208087	-3.053273	0.008119	
18	7	0	-0.578470	-2.747449	0.048302	
19	7	0	0.630116	-2.194929	0.042360	
20	6	0	0.882781	-0.902174	-0.008337	
21	1	0	0.099244	-0.152455	-0.051323	
22	6	0	2.251721	-0.459765	-0.014305	
23	6	0	2.544638	0.927178	-0.079543	
24	6	0	3.353368	-1.355509	0.043779	
25	6	0	3.842269	1.397149	-0.086788	
26	1	0	1.721463	1.632524	-0.126738	
27	6	0	4.651741	-0.896095	0.036801	
28	1	0	3.140741	-2.415527	0.093327	
29	6	0	4.906179	0.485632	-0.028075	
30	1	0	4.058598	2.455653	-0.137213	
31	1	0	5.488835	-1.579905	0.080533	
32	7	0	6.260835	0.967563	-0.035380	
33	8	0	7.185844	0.142774	0.016491	
34	8	0	6.457297	2.191612	-0.093194	

 Table S7. Cartesian coordinates for the optimized structure of THA1.

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	-5.222787	0.895472	-0.270747	
2	6	0	-3.849867	0.782097	-0.004044	
3	6	0	-3.121372	1.949488	0.265460	
4	6	0	-3.751304	3.190991	0.279111	
5	6	0	-5.116960	3.291328	0.021033	
6	6	0	-5.849565	2.136591	-0.255949	
7	1	0	-5.805771	0.012622	-0.507024	
8	1	0	-2.060261	1.867397	0.461694	
9	1	0	-3.172162	4.082833	0.491640	
10	1	0	-5.606316	4.258666	0.029858	
11	1	0	-6.910719	2.204277	-0.468396	
12	6	0	-3.167417	-0.526172	0.000944	
13	6	0	-3.772122	-1.752305	0.004925	
14	6	0	-1.339602	-1.770453	0.026193	
15	1	0	-4.820668	-1.999157	0.022548	
16	7	0	-1.780722	-0.558379	0.018487	
17	16	0	-2.584339	-3.026831	0.016706	
18	7	0	-0.013326	-2.151785	0.034756	
19	1	0	0.206108	-3.143513	0.055323	
20	7	0	0.979058	-1.246268	0.014221	
21	6	0	2.188077	-1.677537	0.028537	
22	1	0	2.413113	-2.750870	0.058114	
23	6	0	3.324569	-0.760565	0.006028	
24	6	0	4.627647	-1.280793	0.028924	
25	6	0	3.150791	0.634579	-0.038832	
26	6	0	5.731977	-0.440333	0.008783	
27	1	0	4.776594	-2.354820	0.062976	
28	6	0	4.246961	1.478370	-0.059291	
29	1	0	2.146378	1.038113	-0.057420	
30	6	0	5.549671	0.948372	-0.035586	
31	1	0	6.734289	-0.849852	0.026804	
32	1	0	4.109438	2.552139	-0.093941	
33	6	0	6.681652	1.821081	-0.056635	
34	7	0	7.597462	2.526461	-0.073548	

 Table S8. Cartesian coordinates for the optimized structure of TH2.

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	-4.820020	1.133369	-0.244855	
2	6	0	-3.466138	0.846231	-0.000081	
3	6	0	-2.602553	1.924723	0.252019	
4	6	0	-3.076951	3.233844	0.270703	
5	6	0	-4.424659	3.502949	0.035311	
6	6	0	-5.293316	2.441030	-0.224394	
7	1	0	-5.508469	0.325833	-0.466644	
8	1	0	-1.557398	1.710690	0.433855	
9	1	0	-2.388432	4.048710	0.470491	
10	1	0	-4.793089	4.523214	0.047980	
11	1	0	-6.343535	2.633815	-0.419375	
12	6	0	-2.943369	-0.533887	-0.002918	
13	6	0	-3.710222	-1.670843	-0.004390	
14	6	0	-1.248686	-2.011474	0.023823	
15	1	0	-4.785725	-1.749547	0.009392	
16	7	0	-1.578932	-0.730251	0.015822	
17	16	0	-2.708151	-3.086309	0.013331	
18	7	0	-0.087762	-2.690655	0.040808	
19	7	0	1.104776	-2.089282	0.034720	
20	6	0	1.310483	-0.793467	-0.009048	
21	1	0	0.503386	-0.068374	-0.045845	
22	6	0	2.670533	-0.301276	-0.015674	
23	6	0	2.918657	1.090756	-0.074550	
24	6	0	3.798894	-1.157974	0.035319	
25	6	0	4.203915	1.602245	-0.082083	
26	1	0	2.073854	1.770738	-0.116360	
27	6	0	5.083302	-0.654364	0.027927	
28	1	0	3.620799	-2.224896	0.079877	
29	6	0	5.314037	0.738025	-0.030659	
30	1	0	4.365417	2.673537	-0.127845	
31	1	0	5.932206	-1.328299	0.067477	
32	6	0	6.638338	1.256567	-0.037429	
33	7	0	7.718767	1.679730	-0.042840	

 Table S9. Cartesian coordinates for the optimized structure of THA2.

Figure S10. Structures of the THs and THAs optimized by using DFT/B3LYP/6-311++G(d,p) level of theory.

Figure S11. Contour plots for the frontier molecular orbitals (HOMO and LUMO) of **TH2** (left) and **THA2** (right); the structures were optimized by using DFT/B3LYP/6-311++G(d,p) level of theory. Note that the energies of the MOs are shown in the parentheses.

Results of NBO Analyses

 Table S10. Second order perturbation theory analysis of Fock matrix in NBO basis for the hetero atoms containing lone pairs in TH1.

Donor NBO (i)	Acceptor NBO (j)	E^2	E(j)-E(i)	F(i,j)
		(kcal/mol)	(a.u.)	(a.u.)
75. LP (1) N16	/567. BD*(1) C12 - C13	2.96	0.77	0.043
76. LP (1) S17	/567. BD*(1) C12 - C13	7.94	0.91	0.076
77. LP (2) S17	/567. BD*(1) C12 - C13	0.55	0.62	0.020
78. LP (1) N18	/572. BD*(1) C14 - N16	8.20	0.84	0.075
78. LP (1) N18	/573. BD*(2) C14 - N16	3.53	0.33	0.034
78. LP (1) N18	/574. BD*(1) C14 - S17	0.82	0.84	0.024
78. LP (1) N18	/578. BD*(1) N20 - C21	3.53	0.96	0.053
78. LP (1) N18	/579. BD*(2) N20 - C21	3.61	0.37	0.033
79. LP (1) N20	/581. BD*(1) C21 - C23	16.96	0.60	0.092
80. LP (1) O34	/595. BD*(1) C30 - N33	4.29	1.07	0.062
80. LP (1) O34	/597. BD*(1) N33 - O35	2.31	1.27	0.049
81. LP (2) O34	/590. BD*(1) C26 - C30	0.70	0.84	0.022
81. LP (2) O34	/595. BD*(1) C30 - N33	14.50	0.57	0.081
81. LP (2) O34	/597. BD*(1) N33 - O35	19.72	0.77	0.112
82. LP (3) O34	/598. BD*(2) N33 - O35	171.84	0.15	0.146
83. LP (1) O35	/595. BD*(1) C30 - N33	4.29	1.06	0.062
83. LP (1) O35	/596. BD*(1) N33 - O34	2.30	1.27	0.049
84. LP (2) O35	/593. BD*(1) C28 - C30	0.70	0.84	0.022
84. LP (2) O35	/595. BD*(1) C30 - N33	14.48	0.57	0.081
84. LP (2) O35	/596. BD*(1) N33 - O34	19.74	0.77	0.112

Table S11. Second order perturbation theory analysis of Fock matrix in NBO basis for the hetero atoms containing lone pairs in **THA1**.

Donor NBO (i)	Acceptor NBO (j)	E ²	E(j)-E(i)	F(i,j)
		(kcal/mol)	(a.u.)	(a.u.)
75. LP (1) N16	/561. BD*(1) C12 - C13	3.10	0.75	0.043
75. LP (1) N16	/568. BD*(1) C14 - S17	5.99	0.86	0.064
75. LP (1) N16	/569. BD*(1) C14 - N18	1.23	0.73	0.027
76. LP (1) S17	/561. BD*(1) C12 - C13	8.43	0.90	0.078
76. LP (1) S17	/566. BD*(1) C14 - N16	6.52	1.03	0.073
77. LP (1) N18	/566. BD*(1) C14 - N16	8.46	0.92	0.080
77. LP (1) N18	/571. BD*(1) N19 - C20	8.90	1.03	0.087
77. LP (1) N18	/572. BD*(2) N19 - C20	5.13	0.43	0.043
78. LP (2) N18	/566. BD*(1) C14 - N16	0.81	0.69	0.024
78. LP (2) N18	/567. BD*(2) C14 - N16	45.43	0.18	0.082
78. LP (2) N18	/568. BD*(1) C14 - S17	0.95	0.68	0.026
78. LP (2) N18	/572. BD*(2) N19 - C20	12.04	0.20	0.048
79. LP (1) N19	/569. BD*(1) C14 - N18	1.28	0.56	0.025
79. LP (1) N19	/572. BD*(2) N19 - C20	1.97	0.22	0.019
79. LP (1) N19	/574. BD*(1) C20 - C22	16.13	0.59	0.092
80. LP (1) O33	/588. BD*(1) C29 - N32	4.28	1.07	0.062
80. LP (1) O33	/591. BD*(1) N32 - O34	2.36	1.27	0.049
81. LP (2) O33	/580. BD*(1) C24 - C27	0.51	0.87	0.019
81. LP (2) O33	/583. BD*(1) C25 - C29	0.70	0.84	0.022
81. LP (2) O33	/588. BD*(1) C29 - N32	14.08	0.58	0.081
81. LP (2) O33	/591. BD*(1) N32 - O34	19.92	0.78	0.112
82. LP (1) O34	/588. BD*(1) C29 - N32	4.29	1.07	0.062
82. LP (1) O34	/589. BD*(1) N32 - O33	2.35	1.27	0.049
83. LP (2) O34	/578. BD*(1) C23 - C25	0.51	0.86	0.019
83. LP (2) O34	/586. BD*(1) C27 - C29	0.70	0.85	0.022
83. LP (2) O34	/588. BD*(1) C29 - N32	14.04	0.58	0.080
83. LP (2) O34	/589. BD*(1) N32 - O33	19.91	0.78	0.113
84. LP (3) O34	/584. BD*(2) C25 - C29	0.55	0.29	0.011
84. LP (3) O34	/590. BD*(2) N32 - O33	155.35	0.15	0.145

Table S12. Second order perturbation theory analysis of Fock matrix in NBO basis for the hetero atoms containing lone pairs in **TH2**.

Donor NBO (i)	Acceptor NBO (j)	E ²	E(j)-E(i)	F(i,j)
		(kcal/mol)	(a.u.)	(a.u.)
74. LP (1) N16	/546. BD*(1) C12 - C13	2.96	0.77	0.043
74. LP (1) N16	/553. BD*(1) C14 - S17	5.65	0.87	0.063
74. LP (1) N16	/554. BD*(1) C14 - N18	1.50	0.69	0.029
75. LP (1) S17	/546. BD*(1) C12 - C13	7.90	0.91	0.076
75. LP (1) S17	/551. BD*(1) C14 - N16	6.54	1.01	0.073
76. LP (1) N18	/551. BD*(1) C14 - N16	8.22	0.84	0.075
76. LP (1) N18	/552. BD*(2) C14 - N16	3.54	0.33	0.034
76. LP (1) N18	/553. BD*(1) C14 - S17	0.81	0.84	0.024
76. LP (1) N18	/557. BD*(1) N20 - C21	3.53	0.96	0.053
76. LP (1) N18	/558. BD*(2) N20 - C21	3.47	0.38	0.032
77. LP (1) N20	/560. BD*(1) C21 - C23	16.91	0.60	0.092
80. LP (1) N34	/573. BD*(1) C30 - C33	10.97	0.87	0.087

Table S13. Second order perturbation theory analysis of Fock matrix in NBO basis for the hetero atoms containing lone pairs in **THA2**.

Donor NBO (i)	Acceptor NBO (j)	E^2	E(j)-E(i)	F(i,j)
		(kcal/mol)	(a.u.)	(a.u.)
74. LP (1) N16	/539. BD*(1) C12 - C13	3.11	0.74	0.043
74. LP (1) N16	/546. BD*(1) C14 - S17	6.04	0.86	0.065
74. LP (1) N16	/547. BD*(1) C14 - N18	1.21	0.73	0.027
75. LP (1) S17	/539. BD*(1) C12 - C13	8.53	0.90	0.079
75. LP (1) S17	/544. BD*(1) C14 - N16	6.50	1.03	0.073
76. LP (1) N18	/544. BD*(1) C14 - N16	8.58	0.91	0.080
76. LP (1) N18	/549. BD*(1) N19 - C20	8.95	1.02	0.087
76. LP (1) N18	/550. BD*(2) N19 - C20	5.95	0.43	0.046
77. LP (2) N18	/544. BD*(1) C14 - N16	0.77	0.69	0.023
77. LP (2) N18	/545. BD*(2) C14 - N16	45.22	0.18	0.083
77. LP (2) N18	/546. BD*(1) C14 - S17	0.96	0.68	0.025
77. LP (2) N18	/550. BD*(2) N19 - C20	10.65	0.20	0.044
78. LP (1) N19	/547. BD*(1) C14 - N18	0.98	0.56	0.022
78. LP (1) N19	/550. BD*(2) N19 - C20	0.91	0.22	0.013
78. LP (1) N19	/552. BD*(1) C20 - C22	17.51	0.58	0.094
79. LP (1) N33	/566. BD*(1) C29 - C32	10.53	0.88	0.086

References

- R. I. Stock, L. G. Nandi, C. R. Nicoleti, A. D. S. Schramm, S. L. Meller, R. S. Heying, D. F. Coimbra, K. F. Andriani, G. F. Caramori, A. J. Bortoluzzi and V. G. Machado, *J. Org. Chem.*, 2015, **80**, 7971–7983.
- C. T. Martins, M. S. Lima, E. L. Bastos, and O. A. El Seoud, *Eur. J. Org. Chem.*, 2008, 1165–1180.
- 3. J. Catalán, J. Phys. Chem. B, 2009, 113, 5951–5960.
- N. Friebe, K. Schreiter, J. Kübel, B. Dietzek, N. Moszner, P. Burtscher, A. Oehlkea and S. Spange, *New J. Chem.*, 2015, **39**, 5171–5179.
- L. G. Nandi, F. Facin, V. G. Marini, L. M. Zimmermann, L. A. Giusti, R. da Silva, G. F. Caramori and V. G. Machado, *J. Org. Chem.*, 2012, 77, 10668–10679.
- R. I. Stock, L. G. Nandi, C. R. Nicoleti, A. D. S. Schramm, S. L. Meller, R. S. Heying, D. F. Coimbra, K. F. Andriani, G. F. Caramori, A. J. Bortoluzzi and V. G. Machado, J. Org. Chem., 2015, 80, 7971–7983.
- R. I. Stock, A. D. S. Schramm, M. C. Rezende and V. G. Machado, *Phys. Chem. Chem. Phys.*, 2016, 18, 20266–20269.