Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

COVAL SOCIETY OF CHEMISTRY

Journal Name

ARTICLE TYPE

Cite this: DOI: 10.1039/xxxxxxxxx

Modeling Excitation Energy Transfer in Covalently Linked Molecular Dyads Containing a BODIPY Unit and a Macrocycle: Electronic Supplementary Information (ESI)

Cloé Azarias,^{*a*} Lorenzo Cupellini,^{*b*} Anouar Belhboub,^{*a,c*} Benedetta Mennucci,^{**b*} and Denis Jacquemin^{**a,d*}

^a Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS no. 6230, BP 92208, Université de Nantes, 2, Rue de la Houssinière, 44322 Nantes, France. E-mail: Denis.Jacquemin@univ-nantes.fr

^b Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 3, 56124 Pisa, Italy. E-mail: Benedetta.Mennucci@unipi.it

^c Centre Inter-universitaire de Recherche et d'Ingénierie des Matériaux (CIRIMAT), UMR CNRS no. 5085, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse, France.

^d Institut Universitaire de France, 1 rue Descartes, F-75231 Paris Cedex 05, France.

Fragment	BODIPY/ZnP states	V ^{coul}	V ^{xc}	V ^{ovlp}	VPCM	V ^{tot}
MO	S_1/S_1	0.2	0.0	0.0	0.1	0.1
	S_1/S_2	5.2	0.0	0.0	3.1	2.2
M1	S_1/S_1	0.1	0.0	0.0	0.1	0.1
	S_1/S_2	8.3	0.0	0.0	4.4	3.9
MC1	S_1/S_1	0.1	0.0	0.0	0.1	0.1
	S_1/S_2	7.4	0.0	0.0	4.0	3.4
MC2	S_1/S_1	0.1	0.0	0.0	0.1	0.1
	S_1/S_2	8.3	0.0	0.0	4.4	3.9
MC3	S_1/S_1	0.1	0.0	0.0	0.0	0.1
	S_1/S_2	5.4	0.0	0.0	3.0	2.4
MC4	S_1/S_1	0.2	0.0	0.0	0.1	0.1
	S_1/S_2	7.9	0.0	0.0	4.3	3.6

Table S1 Theoretical absolute couplings (*V* in cm⁻¹) used to compute the total coupling and EET rate constant in the fully-optimised dyad **1** reported in Table 1 using different fragment definitions (see Figure S1).

S2 Comparison between excitations computed with PBE0 and LC- ω PBE in dyads 2–12

Table S2 Comparison between the transition energy ($\Delta E_{abs}^{th.}$ in eV), oscillator strength (*f*) and molecular orbital (MO) composition of the first excited states (ES) in **1–12** obtained with the PBE0 and LC- ω PBE functional. H and L stand for HOMO and LUMO, respectively. Only the major MO contributions (> 10 %, i.e., CI coefficient > 0.22) are reported here. The nature of the excited states is also given. M, B and CT stand for, Macrocycle, BODIPY and charge transfer states, respectively.

				PBE0				LC- <i>w</i> PBE	
Dyad	ES	$\Delta E_{abs}^{th.}$	f	MO composition (CI coefficient)	Nature	$\Delta E_{abs}^{th.}$	f	MO composition (CI coefficient)	Nature
1	S ₁	2.27	0.223	$H \rightarrow L + 1 (0.58)$	М	2.03	0.037	H→L (0.52)	М
				H–1→L+2 (0.38)				H−1→L+1 (0.48)	
	S_2	2.30	0.030	H→L+2 (0.55)	Μ	2.03	0.006	H→L+1 (0.51)	Μ
				H−1→L+1 (0.43)				H−1→L (-0.49)	
	S_3	2.68	0.002	H→L (0.70)	CT	2.78	0.656	H–2→L+2 (0.70)	В
	S_4	2.88	0.584	H–2→L (0.70)	В	3.24	3.057	$H-1 \rightarrow L+1 (0.52)$	Μ
								H←L (-0.47)	
2	S_1	2.28	0.098	$H-1 \rightarrow L+2$ (-0.40), $H \rightarrow L+1$ (0.58)	Μ	2.03	0.023	$H-1 \rightarrow L+1$ (-0.48), $H \rightarrow L$ (0.53)	Μ
	S_2	2.29	0.050	$H-1 \rightarrow L+1$ (0.42), $H \rightarrow L+2$ (0.56)	M	2.03	0.011	$H-1 \rightarrow L (0.49), H \rightarrow L+1 (0.52)$	M
	S_3	2.66	0.001	$H \rightarrow L (0.71)$	CT	2.78	0.648	$H=2\rightarrow L+2$ (0.70)	В
	S ₄	2.88	0.567	$H=2\rightarrow L(0.70)$	В	3.26	2.262	$H-1 \rightarrow L+1$ (0.52), $H \rightarrow L$ (0.47)	M
31	S_1	2.31	0.073	$H \rightarrow L+1 (0.57), H-1 \rightarrow L+2 (-0.42)$	M	2.04	0.0143	$H-1 \rightarrow L+1$ (-0.49), $H \rightarrow L$ (0.51)	M
	S_2	2.31	0.035	$H \rightarrow L+2$ (0.56), $H-1 \rightarrow L+1$ (0.43)	M	2.04	0.0071	$H-1 \rightarrow L (0.49), H \rightarrow L+1 (0.51)$	M
	53 S	2./2	0.000	$H \rightarrow L(0.71)$		2.78	0.000	$H-2 \rightarrow L+2 (0.70)$	В
- 0.6	5 ₄	2.89	0.007	$H=2\rightarrow L(0.70)$	B	3.29	2.341	$H-I \rightarrow L+1 (0.51), H \rightarrow L (0.48)$	IVI
31	S_1	2.30	0.047	$H-1 \rightarrow L+2 (0.36), H \rightarrow L+1 (0.49),$	IVI	2.03	0.012	$H-1 \rightarrow L+1$ (-0.43), $H \rightarrow L$ (0.47)	IVI
	c .	2 21	0.044	$\Pi \rightarrow L + 2 (-0.23)$ $\Pi = 1 \ (0.27) \ \Pi = 1 \ (0.27)$	М	2.04	0.006	H_{1} (0.45) H_{1} (0.46)	Л
	32	2.31	0.044	$H \to L+1 (0.37), H \to L+1 (0.27), H \to L+2 (0.48)$	141	2.04	0.000	$\Pi = \Pi \rightarrow L (0.43), \Pi \rightarrow L + \Pi (0.40)$	141
	Sa	2 38	0.001	$H \rightarrow L (0.66)$	СТ	2 75	0 794	$H_{-2} \rightarrow I + 2 (0.66)$	В
	S₄	2.62	0.019	$H = 1 \rightarrow L (0.70)$	CT	3.28	2.020	$H = 1 \rightarrow L + 1 (0.48), H \rightarrow L (0.46)$	M
	S5	2.82	0.813	$H = 2 \rightarrow L (0.70)$	B	3.30	1.817	$H = 1 \rightarrow L (0.48), H \rightarrow L + 1 (-0.46)$	M
4	S ₁	2.30	0.071	$H=1 \rightarrow L+2$ (0.42), $H\rightarrow L+1$ (0.57)	M	2.03	0.017	$H-1 \rightarrow L+1 (0.48), H \rightarrow L (0.51)$	M
•	S_2	2.31	0.036	$H = 1 \rightarrow L + 1 (-0.43), H \rightarrow L + 2 (0.56)$	M	2.04	0.009	$H=1 \rightarrow L$ (-0.48), $H \rightarrow L+1$ (0.51)	M
	S3	2.62	0.000	$H \rightarrow L (0.71)$	CT	2.80	0.645	$H-2 \rightarrow L+2 (0.70)$	В
	S_4	2.89	0.000	$H-1 \rightarrow L (0.71)$	CT	3.31	2.241	$H-1 \rightarrow L+1 (0.52), H \rightarrow L (-0.48)$	М
	S_5	2.91	0.592	H–2→L (0.70)	В	3.32	1.891	$H-1 \rightarrow L$ (0.51), $H \rightarrow L+1$ (0.48)	Μ
5	S_1	1.94	0.357	H−1→L (-0.36), H→L (0.61)	B, CT	1.94	0.973	H–2→L (0.69)	В
	S_2	1.97	0.581	H−1→L (0.61), H→L (0.36)	B, CT	2.04	0.009	H−1→L+1 (0.25), H−1→L+2 (-0.43),	Μ
								$H \rightarrow L+1$ (0.44), $H \rightarrow L+2$ (0.26)	
	S_3	2.16	0.000	H–2→L (0.71)	CT	2.04	0.003	$H-1\rightarrow L+1$ (0.43), $H-1\rightarrow L+2$ (0.25),	Μ
								$H \rightarrow L+1$ (-0.26), $H \rightarrow L+2$ (0.44)	
	S_4	2.31	0.054	$H-2\rightarrow L+2$ (-0.42), $H\rightarrow L+1$ (0.56)	Μ	3.29	0.351	H–3→L (0.54)	В
	S_5	2.32	0.026	H–2→L+1 (0.45), H→L+2 (0.54)	М	3.30	1.986	$H \rightarrow L+1$ (0.44), $H-1 \rightarrow L+2$ (0.46),	М
		0.1.(0.001				0.015	$H=3\rightarrow L(-0.24)$	
6-a	S_1	2.16	0.001	$H=3\rightarrow L$ (0.31), $H\rightarrow L$ (0.63)	CT	2.03	0.015	$H-I \rightarrow L+1^{"}$ (-0.34), $H \rightarrow L$ (0.48),	M
	c	2.20	0.050		ъл	2.02	0.010	$H-I \rightarrow L+2^{*}$ (0.30)	٦л
	5_2	2.28	0.059	$H=1\rightarrow L+2$ (-0.40), $H\rightarrow L+1$ (0.58)	IVI	2.03	0.013	$H-1 \rightarrow L (0.45), H \rightarrow L+1^{-1} (0.30),$	IVI
	c .	2 20	0.001	\mathbf{H}_{1} 1 $(1, 1, 1, (0, 40)$ \mathbf{H}_{1} $(1, 2, (0, 50)$	М	2 77	0.401	$\Pi \rightarrow L + 2^{\circ} (-0.32)$ $\Pi \rightarrow L + 2^{\circ} (-0.32)$ $\Pi \rightarrow L + 2^{\circ} (0.51)$	D
	53 S.	2.20	0.001	$H = 1 \rightarrow L + 1 (0.40), H \rightarrow L + 2 (0.30), H = 2 \rightarrow L (0.70)$	B b	2.77	2 260	H 1 \downarrow (0.51) H \downarrow \downarrow 1 ^{<i>a</i>} (0.36)	M
	54	2.72	0.040	11-2-7L (0.70)	U	5.20	2.207	$H \rightarrow I + 2^{a} (0.32)$	TAT
	S-	2 50	0.000	$H_3 \rightarrow I (0.49) H_1 \rightarrow I (0.40)$	СТ	3 20	2 071	$H \rightarrow I (0.47) H_{-1} \rightarrow I + 1 (0.38)$	М
	-3	2.00	0.000	$H \rightarrow I.$ (-0.31)	51	0.27	2.0/1	$H = 1 \rightarrow L + 2^{a} (-0.34)$	141
	S ₆	2.62	0.000	$H = 1 \rightarrow L (0.57), H = 3 \rightarrow L (-0.40)$	СТ	3.92	0.000	$H_{-4} \rightarrow L_{+1}^{a}$ (0.42), $H_{-4} \rightarrow L_{+2}^{a}$ (0.44)	СТ
	S7	2.82	0.376	$H=3\rightarrow L+2$ (0.55), $H=1\rightarrow L+1$ (-0.26)	M	4.02	0.189	$H-2 \rightarrow L+1^{a}$ (0.40), $H-2 \rightarrow L+2^{a}$ (0.43)	CT
	$\dot{S_8}$	2.86	0.278	H–4→L (0.65)	В	4.08	0.018	H–8→L (0.69)	Μ

^{*a*} these LUMO orbitals are delocalised on the two fragments

^b this state corresponds to a CT in the BODIPY unit (from the triphenylamino group to the core of the BODIPY)

Table S3	Follow-up o	f Table S2
----------	-------------	------------

				PBE0				LC-ωPBE	
Dvad	ES	$\Delta E_{1}^{\text{th.}}$	f	MO composition (CI coefficient)	Nature	$\Delta E^{\text{th.}}$	f	MO composition (CI coefficient)	Nature
6-b	S ₁	2.27	0.071	$H \rightarrow L+1 (0.59), H-1 \rightarrow L+2 (-0.38)$	М	2.02	0.020	$H-1 \rightarrow L+1 (0.43), H \rightarrow L (0.48),$	М
								$H \rightarrow L+1$ (-0.23)	
	S_2	2.27	0.089	$H \rightarrow L+2$ (0.57), $H-1 \rightarrow L+1$ (0.39)	Μ	2.02	0.018	$H-1 \rightarrow L$ (-0.43), $H \rightarrow L$ (0.23),	Μ
				/- /->				$H \rightarrow L+1 (0.47)$	_
	S_3	2.30	0.000	$H \rightarrow L (0.62)$	CT	2.77	0.498	$H-2 \rightarrow L+2 (0.69)$	В
	S_4	2.61	0.001	$H=3\rightarrow L$ (0.38), $H=2\rightarrow L$ (0.34),	CI	3.27	2.232	$H-1 \rightarrow L$ (0.51), $H \rightarrow L+1$ (0.46)	M
	S.	2 78	0 040	$H=1\rightarrow L$ (0.38), $H\rightarrow L$ (-0.30) $H=2\rightarrow L$ (0.63) $H=1\rightarrow L+2$ (0.24)	в	3 27	2 001	$H \rightarrow I (-0.46) H - 1 \rightarrow I + 1 (0.51)$	м
7	<u>S</u> ,	2.70	0.949	$H_2 \rightarrow L (0.03), H_1 \rightarrow L + 2 (0.24)$	MCT	2.04	0.014	$H_1 \rightarrow L + 1 (0.46) H_2 \downarrow^a (0.43)$	M
/	J	2.27	0.107	$11-1 \rightarrow 1 + 1 (0.27), 11 \rightarrow 1 (0.01)$	WI, CI	2.07	0.014	$H \rightarrow L + 2^{a}$ (-0.23)	101
	Sa	2.31	0.027	$H-1 \rightarrow I_{1}$ (-0.30), $H-1 \rightarrow I_{1}+2$ (0.31),	CT. M	2.04	0.010	$H^{-1} \rightarrow L^{a}$ (-0.41), $H^{-1} \rightarrow L^{+2a}$ (0.23).	М
	- 2			$H \rightarrow L+1 (0.53)$				$H \rightarrow L+1 (0.48)$	
	S_3	2.42	0.042	$H-1 \rightarrow L+1$ (-0.32), $H \rightarrow L$ (0.34),	M, CT	2.70	1.449	$H-2 \rightarrow L^{a}$ (0.37), $H-2 \rightarrow L+2^{a}$ (0.52)	В
	-			$H \rightarrow L + 2(0.52)$					
	S_4	2.61	0.338	H–1 \rightarrow L (0.62), H–1 \rightarrow L+2 (0.24)	CT, M	3.29	2.100	$H-1 \rightarrow L^{a}$ (0.37), $H-1 \rightarrow L+1$ (0.31),	Μ
								$H \rightarrow L^{a}$ (-0.27), $H \rightarrow L+1$ (0.39)	
	S_5	2.77	0.949	$H-2\rightarrow L$ (0.58), $H-1\rightarrow L+2$ (0.24)	В, М	3.35	1.018	$H-1 \rightarrow L^{a}$ (-0.26), $H-1 \rightarrow L+1$ (0.39)	М
		0.01				0.00		$H \rightarrow L^{a}$ (-0.32), $H \rightarrow L+1$ (-0.29)	
8	S_1	2.31	0.034	$H-I \rightarrow L+2$ (0.43), $H \rightarrow L+1$ (0.56)	M	2.03	0.009	$H-1 \rightarrow L$ (-0.49), $H \rightarrow L+1$ (0.51)	M
	52 S.	2.31	0.041	$H \to L + 1 (-0.43), H \to L + 2 (0.55)$		2.04	0.009	$H = 1 \rightarrow L + 1 (0.9), H \rightarrow L (0.52)$	IVI D
	53 54	2.39	0.000	$H_{1} \rightarrow I (0.71)$	СТ	2.02	1.06	$H_2 \rightarrow L \pm 2 (0.09)$ $H_1 \rightarrow I (0.43) H_1 \rightarrow I \pm 1 (-0.27)$	M
	04	2.02	0.001		GI	5.52	1.70	$H \rightarrow I_{-1} (0.25), H \rightarrow I_{-1} - (0.42), H \rightarrow I_{-1} (0.42)$	141
	S5	2.91	0.415	$H-2 \rightarrow I_{1}(0.70)$	В	3.32	2.008	$H^{-1} \rightarrow L(0.27), H^{-1} \rightarrow L^{+1}(0.44).$	М
	- 5				_			$H \rightarrow L$ (-0.41), $H \rightarrow L+1$ (0.26)	
9	S_1	2.24	0.059	H–2→L+1 (0.39), H–1→L (0.58)	М	1.94	0.019	$H-1\rightarrow L+1$ (0.47), $H\rightarrow L$ (0.54)	М
	S_2	2.25	0.056	H–2->L (-0.40), H–1->L+1 (0.57)	Μ	1.95	0.015	H–1 \rightarrow L (-0.48), H \rightarrow L+1 (0.53)	Μ
	S_3	2.45	0.001	H->L (0.71)	CT	2.79	0.553	H−2→L+2 (0.68)	В
	S_4	2.48	0.000	H->L+1 (0.71)	CT	3.24	1.612	$H-1 \rightarrow L (0.47), H \rightarrow L+1 (0.44)$	Μ
	S ₅	2.88	0.438	H-> L+3 (0.69)	B	3.25	1.796	$H \rightarrow L$ (-0.43), $H - 1 \rightarrow L + 1$ (0.48)	M
10	S_1	1.96	0.867	$H \rightarrow L (0.70)$	M	1.70	0.799	$H \rightarrow L (0.69)$	M
	5 ₂	2.02	0.013	$H \rightarrow L + 1 (0.70)$	M	1.70	0.634	$H \rightarrow L + 1 (0.69)$	M
	53 5.	2.55	0.002	$\Pi \rightarrow L + 2 (0.71)$ H 1 \L (0.71)	CT	2.60	0.049	$\Pi = 1 \rightarrow L + 2 (0.09)$ H 8 \L (0.26) H 7 \L (0.52)	D M
	54	2.39	0.001	II-1→L (0.71)	C1	5.00	0.001	$H=5 \rightarrow I (0.20), H=7 \rightarrow I (0.32), H=5 \rightarrow I (0.20)$	101
	S5	2.66	0.000	$H_{-1} \rightarrow L_{+1} (0.71)$	СТ	3.70	0.000	$H=8 \rightarrow L+1 (0.26), H=7 \rightarrow L+1 (0.52)$	М
	- 5							H–5→L+1 (0.29)	
	S_6	2.89	0.595	H–1→L+2 (0.70)	В	3.82	0.905	H–2→L (0.39), H→L+3 (-0.38)	CT, M
11	S_1	1.81	1.103	H→L+2 (0.71)	В	2.10	1.213	H→L (0.65)	В
	S_2	1.96	0.001	H→L (0.71)	CT	2.34	0.451	$H-1 \rightarrow L+1$ (0.68)	Μ
	S_3	1.97	0.000	$H \rightarrow L+1 (0.71)$	CT	2.34	0.475	$H-1 \rightarrow L+2 (0.69)$	Μ
	S_4	2.43	0.421	$H-2\rightarrow L(0.70)$	M	3.49	2.957	$H-2 \rightarrow L (0.55), H \rightarrow L+4 (0.31)$	В
	S_5	2.44	0.439	$H-2\rightarrow L+1$ (0.70)	М	3.98	0.058	$H=3\rightarrow L$ (0.43), $H=2\rightarrow L+4$ (-0.29),	В
10		1 50	0.001		14	1.00	0.150	$H \rightarrow L + 8 (0.34)$	14
12	S_1	1.59	0.094	$H \rightarrow L$ (0.49), $H - I \rightarrow L + I$ (0.45)	M	1.32	0.152	$H-1 \rightarrow L+1$ (-0.4), $H \rightarrow L$ (0.57)	M
	52 S.	2.06	0.062	$\Pi \rightarrow L + I (0.4/), \Pi - I \rightarrow L (0.4/)$ H 1 $\downarrow I + I (0.51)$ H $\downarrow I (0.47)$	IVI M	1.33	0.118	$\Pi - 1 \rightarrow L (0.44), \Pi \rightarrow L + 1 (0.57)$ H 1 $(1 + 1)(0.57)$ H (0.72)	IVI M
	53 5.	2.00	0.405	$H_1 \rightarrow I (0.51), \ \Pi \rightarrow I (0.47)$ $H_1 \rightarrow I (0.50) H_1 + 1 (0.40)$	M	2.30	0.319	$H_1 \rightarrow I (0.55) H_1 \rightarrow I (0.42)$	M
	54 S5	2.17	0.000	$H=2\rightarrow L$ (0.71)	CT	2.56	0.765	$H=2\rightarrow L+2$ (0.68)	B
	55 S6	2.22	0.000	$H=2\rightarrow L+1$ (0.71)	CT	3.03	0.017	$H=3\rightarrow L+1$ (0.48), $H=1\rightarrow LUMO+3$ (-0.41)	M
	S ₇	2.48	0.685	$H-2\rightarrow L+2(0.71)$	В	3.05	0.141	H→L+3 (0.62)	М

^{*a*} these LUMO orbitals are delocalised on the two fragments

S3 Functional and atomic basis set benchmarks

Table S4 Theoretical absolute couplings (V in cm⁻¹) used to compute the total coupling and EET rate constant in the fully-optimised dyad **1** reported in Tables 4 and 5 using the **MC1** fragment definition (see Figure S1) with different exchange-correlation functionals and atomic basis sets.

Method/6-31+G(d)	BODIPY/ZnP states	V ^{coul}	V ^{xc}	V ^{ovlp}	V ^{PCM}	V^{tot}
PBEO	S_1/S_1	0.1	0.0	0.0	0.1	0.1
	S_1/S_2	7.4	0.0	0.0	4.0	3.4
B3LYP	S_1/S_1	0.1	0.0	0.0	0.1	0.1
	S_1/S_2	7.9	0.0	0.0	4.2	3.7
M06-2X	S_1/S_1	0.2	0.0	0.0	0.1	0.1
	S_1/S_2	4.3	0.0	0.0	2.7	1.6
CAM-B3LYP	S_1/S_1	0.2	0.0	0.0	0.1	0.1
	S_1/S_2	3.6	0.0	0.0	2.4	1.2
EOM-CCSD (BODIPY) / PBE0(ZnP)	S_1/S_1	0.1	0.0	0.0	0.1	0.1
	S_1/S_2	6.8	0.0	0.0	3.7	3.1
PBE0/Atomic basis set	BODIPY/ZnP states	V ^{coul}	V ^{xc}	V ^{ovlp}	VPCM	V ^{tot}
6-31+G(d)	S_1/S_1	0.1	0.0	0.0	0.1	0.1
	S_1/S_2	7.4	0.0	0.0	4.0	3.4
6-311+G(d)	S_1/S_1	0.1	0.0	0.0	0.1	0.1
	S_1/S_2	6.7	0.0	0.0	3.7	3.1
6-311+G(2d,p)	S_1/S_1	0.1	0.0	0.0	0.1	0.1
	S_1/S_2	6.5	0.0	0.0	3.6	3.0

S4 Rotational analysis in 1

Fig. S2 Representation of the angles (a) Ψ and (b) Φ considered in the rotational analysis. The BODIPY (ZnP) plane is the red (blue) plane.

Table S5 Theoretical absolute total couplings (V^{Whole} in cm ⁻¹) in dyad 1 when incrementing by 30° the Ψ dihedral angle between the two meso phenyl
linked through the ethynyl bridge. The value of the angle Φ between the planes of the BODIPY and ZnP as well as the relative electronic energies (${\sf E}_{\sf re}$
in kcal/mol). The angles are given in degrees. Note that the 0° value corresponds to the fully-optimised geometry. The MC1 fragmentation is applied.

Increment on Ψ	Angle Ψ	Angle Φ	E _{rel.}	V ^{Whole}
0	6	22	0.0	3.4
30	36	8	0.3	3.7
60	66	38	0.8	3.1
90	96	68	1.0	1.8
120	126	82	0.7	0.8
150	156	52	0.2	2.2

S5 Orientation of the meso phenyl of the ZnP moiety in 1

We have also assessed if the orientation of the *meso* phenyl rings attached to the ZnP moiety has an effect on the EET coupling. We note here that we performed a rigid rotation of the phenyls, the structures have not been re-optimised. It turns out that changing the orientation of the *meso* phenyl rings of the ZnP moiety has no influence on the coupling with the BODIPY unit. Indeed, we obtained a total coupling of 3.4 and 3.5 cm⁻¹ for the structures represented in Figure S3b and S3c, respectively.

Fig. S3 Representation of (a) 1 in its optimised structure (two views); (b) 1 after rotating the *meso* phenyl bearing the isocyanide ligand and (c) 1 after rotating of one of the two substituent-free *meso* phenyl rings so that all the *meso* phenyl on the porphyrin are arranged in an "helicoidal" manner. The differences between the optimised structure and the two modified ones are highlighted in red squares for the sake of clarity.

Fig. S4 Representation of the different fragmentation schemes used to compute the coupling values reported in Table 5 in the main text. The dihedral angles Φ considered in the rotational analysis are also displayed in red.

Dyad	V ^{coul}	V ^{xc}	V ^{ovlp}	VPCM	V ^{tot}
1	0.1	0.0	0.0	0.1	0.1
	7.4	0.0	0.0	4.0	3.4
2	0.1	0.0	0.0	0.0	0.1
	11.9	0.0	0.0	6.4	5.4
31	1.2	0.0	0.0	0.6	0.7
	5.7	0.0	0.0	2.9	2.8
3f	10.3	0.2	0.0	5.1	5.0
	36.2	0.9	0.0	10.7	24.6
4	1.5	0.0	0.0	0.5	1.0
	5.0	0.0	0.0	2.3	2.7
5	74.8	1.1	0.0	34.7	39.0
	5.3	0.0	0.0	3.1	2.2
6-a	19.3	0.0	0.0	11.1	8.2
	0.7	0.1	0.0	1.1	0.3
6-b	27.0	0.1	0.0	15.5	11.6
	4.2	0.1	0.0	1.9	2.2
7	67.9	8.8	0.2	6.8	52.4
	214.2	10.5	0.4	22.7	181.4
8	3.8	0.0	0.0	1.4	2.4
	29.6	0.0	0.0	12.6	17.1
9	86.4	0.8	0.0	39.3	46.3
	25.8	0.4	0.0	13.4	12.8
10	28.7	0.0	0.0	12.4	16.3
	56.1	0.0	0.0	23.0	33.1
11	2.1	0.0	0.0	0.9	1.2
	32.1	0.0	0.0	13.1	19.1

Table S6 Theoretical absolute couplings (*V* in cm⁻¹) used to compute the total coupling and EET rate constant in the fully-optimised dyads 1-11 reported in Table 5 (see Figure S4 for the fragment definition used here).

Dyad	Increment on Ψ	Angle Ψ	Angle Φ	E _{rel.}	V ^{Whole}	Dyad	Increment on Ψ	Angle Ψ	Angle Φ	E _{rel.}	V ^{Whole}
2	0	-1	15	0.0	5.4	6-b	0	69	37	0.3	11.8
	30	29	35	1.0	4.9		30	99	34	0.4	14.1
	60	59	57	3.1	4.3		60	129	46	0.0	14.5
	90	89	83	4.5	4.3		90	159	66	6.4	10.0
	120	119	54	3.0	4.0		120	-171	83	23.5	24.8
	150	149	31	1.0	4.8		150	-141	53	3.2	5.7
31	0	0	39	0.0	2.9	7	0	-68	68	0.0	188.9
	30	30	29	0.7	3.6		30	-38	49	3.4	207.4
	60	60	45	2.2	4.5		60	-8	36	16.0	244.7
	90	90	65	3.3	6.4		90	22	24	37.3	291.9
	120	120	82	2.2	3.3		120^{a}	52	—	—	—
	150	150	60	0.7	2.0		150	82	81	0.4	183.1
3f	0	-24	14	7.4	25.1	8	0	83	65	0.0	17.2
	30	6	23	8.8	22.7		30	113	68	0.5	16.1
	60	36	88	9.7	10.9		60	143	78	5.7	13.8
	90	66	89	4.9	9.3		90	173	88	20.2	11.2
	120^{a}	96	—	—	—		120	-157	56	18.9	7.0
	150	126	40	0.0	21.4		150	-127	71	2.1	15.5
4	0	-30	59	0.0	2.9	9	0	9	62	1.1	48.0
	30	0	32	0.5	4.5		30	39	70	0.6	73.3
	60	30	23	0.0	4.9		60	69	50	0.0	76.7
	90	60	24	1.1	4.9		90	99	64	1.3	47.7
	120	90	70	2.6	2.2		120	129	72	1.9	52.7
	150	120	83	1.2	1.8		150	159	50	0.2	73.3
5	0	7	32	0.8	39.0	10	0	-9	75	0.0	11.7
	30	37	20	0.3	40.9		30	21	74	0.1	12.2
	60	67	37	0.4	41.7		60	51	44	0.6	33.0
	90	97	66	0.5	42.7		90	81	15	1.1	45.3
	120	127	83	0.0	44.5		120	111	18	0.9	44.4
	150	157	55	0.5	45.9		150	141	45	0.4	32.3
6-a	0	68	35	0.4	8.2	11	0	-2	88	0.0	19.1
	30	98	35	0.4	9.5		30	28	89	0.3	19.0
	60	128	47	0.0	11.3		60	58	89	0.8	18.4
	90	158	67	6.3	8.5		90	88	87	1.1	18.2
	120	-172	86	23.3	14.3		120	118	87	0.9	18.5
	150	-142	53	3.6	2.2		150	148	86	0.3	18.9

Table S7 Theoretical absolute total couplings (V^{Whole} in cm⁻¹) when incrementing by 30° the Ψ dihedral angle in dyad **2–11**. The value of the angle Φ between the planes of the BODIPY and ZnP as well as the relative electronic energies ($E_{rel.}$ in kcal/mol). The angles are given in degrees. Note that the 0° value corresponds to the fully-optimised geometry. The **MC1** fragmentation is applied.

^{*a*} for those angles, we obtained a steric clash between the atoms of the donor and acceptor moieties.

S7 Fragment definition in dyad 2

Fig. S5 Representation of the different fragmentation schemes considered in dyad 2.

Table S8 Calculated transition energies ($\Delta E_{abs}^{th.}$ in eV) and oscillator strengths (*f*) of the excited-states of the different fragments involved in the electronic coupling in **2** (see Figure S5). Theoretical absolute couplings (*V* in cm⁻¹) and EET rate constant (k^{th.} in s⁻¹) computed on the fully-optimised structure for each fragmentation scheme are also given.

Fragmentation	BODIPY	l fragment	ZnP fr	ZnP fragment				EET Coupling				
scheme	$\Delta E_{abs}^{th.}$	f	$\Delta E_{abs}^{th.}$	f	V ^{coul}	V ^{xc}	V ^{ovlp}	V^{PCM}	V^{tot}	V ^{Whole}	k ^{th.}	
MO	2.83	0.684	2.33	0.022	1.3	0.0	0.0	0.7	0.5	4.5	$5.8{ imes}10^9$	
			2.33	0.043	10.2	0.0	0.0	5.7	4.5			
M1	2.88	0.652	2.29	0.064	2.0	0.0	0.0	1.0	1.0	6.4	$1.1 { imes} 10^{10}$	
			2.29	0.061	13.4	0.0	0.0	7.2	6.3			
MC1	2.88	0.652	2.28	0.080	0.1	0.0	0.0	0.0	0.1	5.4	8.4×10^{9}	
			2.30	0.052	11.9	0.0	0.0	6.4	5.4			
MC2	2.87	0.649	2.29	0.064	1.9	0.0	0.0	1.0	0.9	6.3	$1.1{ imes}10^{10}$	
			2.29	0.061	13.4	0.0	0.0	7.2	6.3			

S8 Fragment definition in dyad 3

Fig. S6 Representation of the different fragmentation schemes considered in dyad 3.

Table S9 Calculated transition energies ($\Delta E_{abs}^{th.}$ in eV) and oscillator strengths (*f*) of the excited-states of the different fragments involved in the electronic coupling (see Figure S6) in the two key conformers of **3**, namely **3I** ("linear" conformation) and **3f** ("folded" conformation), see Figure 5 in the main text. Theoretical absolute couplings (*V* in cm⁻¹) and EET rate constant (k^{th.} in s⁻¹) computed on the fully-optimised structure for each fragmentation scheme are also given.

Conformer	Fragmentation	BODIPY	/ fragment	ZnP fr	agment				EET Co	upling		
3l [◊]	scheme	$\Delta E_{abs}^{th.}$	f	$\Delta E_{abs}^{th.}$	f	V ^{coul}	V^{xc}	V^{ovlp}	V^{PCM}	V ^{tot}	V ^{Whole}	k ^{th.}
	M0	2.83	0.681	2.35	0.020	3.8	0.0	0.0	2.1	1.7	1.8	8.8×10^{8}
				2.35	0.010	0.6	0.0	0.0	0.2	0.4		
	M1	2.88	0.650	2.31	0.040	1.4	0.0	0.0	0.6	0.7	2.7	2.1×10^{9}
				2.32	0.033	5.3	0.0	0.0	2.7	2.6		
	MC1	2.88	0.650	2.31	0.064	1.2	0.0	0.0	0.6	0.7	2.9	2.4×10^{9}
				2.31	0.036	5.7	0.0	0.0	2.9	2.8		
	MC2	2.88	0.644	2.31	0.040	1.3	0.0	0.0	0.6	0.7	2.7	2.0×10^{9}
				2.32	0.0.33	5.3	0.0	0.0	2.7	2.6		
3f [◊]	Fragmentation	BODIPY	/ fragment	ZnP fr	agment				EET Co	upling		
	scheme	$\Delta E_{abs}^{th.}$	f	$\Delta E_{abs}^{th.}$	f	V ^{coul}	V ^{xc}	V^{ovlp}	V^{PCM}	V ^{tot}	V ^{Whole}	k ^{th.}
	M0	2.84	0.671	2.35	0.021	7.8	0.8	0.0	0.2	7.2	16.1	7.4×10^{10}
				2.35	0.011	22.6	0.0	0.0	8.2	14.4		
	M1	2.85	0.610	2.31	0.036	5.4	0.1	0.0	2.0	3.4	22.8	1.5×10^{11}
				2.31	0.036	32.9	0.9	0.0	9.5	22.5		
	MC1	2.85	0.610	2.31	0.057	10.3	0.2	0.0	5.1	5.0	25.1	1.8×10^{11}
				2.31	0.040	36.2	0.9	0.0	10.7	24.6		
	MC2	2.85	0.595	2.31	0.036	1.5	0.2	0.0	0.6	1.0	23.2	$1.5 imes 10^{11}$
				2.31	0.036	34.2	0.9	0.0	10.2	23.1		
3f *	Fragmentation	BODIPY	fragment	ZnP fr	agment				EET Co	upling		
	scheme	$\Delta E_{abs}^{th.}$	f	$\Delta E_{abs}^{th.}$	f	V ^{coul}	V ^{xc}	V^{ovlp}	$V^{\rm PCM}$	V ^{tot}	V ^{Whole}	k ^{th.}
	MC1	2.88	0.601	2.29	0.072	44.7	0.6	0.0	20.0	24.2	80.1	1.8×10^{12}
				2.30	0.034	130.9	0.7	0.0	55.2	76.4		

 \diamond optimised at the PBE0-D3^{BJ} level

* optimised at the PBE0-D3 level

S9 Evaluation of the experimental EET rate constant in 4

For dyad 4, the EET rate constant has not been experimentally reported. However, the EET efficiency (η) has been calculated to be 95.8 %, using the fluorescence intensity of the donor (BODIPY unit) in the presence (I_D) or in absence (I_D°) of the acceptor(ZnP) part, according to the following equation:

$$\eta = 1 - \frac{I_D}{I_D^\circ} \tag{S1}$$

As the lifetime of the unquenched donor (τ_D°) has been experimentally measured, and considering that the EET efficiency can be written using the fluorescence yield of the unquenched/quenched donor (Φ_D°/Φ_D):

$$\eta = 1 - \frac{\Phi_{\rm D}}{\Phi_{\rm D}^{\circ}}, \quad \text{with} \quad \Phi_{\rm D}^{\circ} = \frac{k_{\rm r}}{k_{\rm r} + k_{\rm nr}} = \frac{k_{\rm r}}{k^{\circ}} \quad \text{and} \quad \Phi_{\rm D} = \frac{k_{\rm r}}{k_{\rm r} + k_{\rm nr} + k_{\rm EET}}$$
(S2)

One can therefore estimate the EET rate constant (k_{EET}) value according to:

$$k_{\text{EET}} = \frac{1}{\tau_{\text{D}}^{\circ}} (\frac{\eta}{1-\eta})$$
(S3)

with k_r, k_{nr} corresponding to the radiative, non-radiative and EET rate constants, respectively.

Fig. S7 Representation of the different fragmentation schemes considered in dyad 4.

Table S10 Calculated transition energies ($\Delta E_{abs}^{th.}$ in eV) and oscillator strengths (*f*) of the excited-states of the different fragments involved in the electronic coupling in **4** (see Figure S7). Theoretical absolute couplings (*V* in cm⁻¹) and EET rate constant (k^{th.} in s⁻¹) computed on the fully-optimised structure for each fragmentation scheme are also given.

Fragmentation	BODIPY	l fragment	ZnP fr	agment	EET Coupling							
scheme	$\Delta E_{abs}^{th.}$	f	$\Delta E_{abs}^{th.}$	f	V ^{coul}	V ^{xc}	V ^{ovlp}	V^{PCM}	V^{tot}	V ^{Whole}	k ^{th.}	
MO	2.86	0.659	2.35	0.017	1.4	0.0	0.0	0.8	0.5	2.0	$1.2{ imes}10^{9}$	
			2.35	0.018	3.7	0.0	0.0	1.7	2.0			
M1	2.91	0.627	2.31	0.042	1.7	0.0	0.0	0.6	1.1	3.0	2.6×10^{9}	
			2.31	0.038	5.2	0.0	0.0	2.3	2.8			
MC1	2.91	0.627	2.30	0.061	1.5	0.0	0.0	0.5	1.0	2.9	2.4×10^{9}	
			2.31	0.037	5.0	0.0	0.0	2.3	2.7			
MC2	2.90	0.621	2.31	0.042	1.3	0.0	0.0	0.5	0.9	2.9	2.5×109	
			2.31	0.038	5.1	0.0	0.0	2.3	2.8			

S11 Fragment definition in dyad 5

Fig. S8 Representation of the different fragmentation schemes considered in dyad 5.

Table S11 Calculated transition energies ($\Delta E_{abs}^{th.}$ in eV) and oscillator strengths (*f*) of the excited-states of the different fragments involved in the electronic coupling in **5** (see Figure S8). Theoretical absolute couplings (*V* in cm⁻¹) and EET rate constant (k^{th.} in s⁻¹) computed on the fully-optimised structure for each fragmentation scheme are also given.

	DODID	7.0	7 D (1.		
Fragmentation	RODIL	fragment	ZnP fr	agment				EET Co	upling		
scheme	$\Delta E_{abs}^{th.}$	f	$\Delta E_{abs}^{th.}$	f	V ^{coul}	V ^{xc}	V ^{ovlp}	V^{PCM}	V^{tot}	V ^{Whole}	k ^{th.}
M0	2.15	0.897	2.35	0.020	8.2	0.0	0.0	4.7	3.5	3.5	3.6×10^{9}
			2.35	0.009	1.8	0.0	0.0	1.3	0.6		
M1	1.99	0.865	2.32	0.034	42.2	0.3	0.0	21.5	20.4	25.6	1.9×10^{11}
			2.32	0.034	31.8	0.3	0.0	15.9	15.5		
MC1	1.99	0.865	2.31	0.047	74.8	1.1	0.0	34.7	39.0	39.0	4.3×10^{11}
			2.32	0.027	5.3	0.0	0.0	3.1	2.2		
MC2	1.97	0.863	2.32	0.034	52.1	0.8	0.0	24.5	26.9	35.9	3.6×10^{11}
			2.32	0.034	44.6	0.9	0.0	20.0	23.8		

S12 Additional EET data in 6-x dyads

Fig. S9 Representation of the different fragmentation schemes considered in dyad 6-x.

Table S12 Calculated transition energies ($\Delta E_{abs}^{th.}$ in eV) and oscillator strengths (*f*) of the excited-states of the different fragments involved in the electronic coupling in **6-x** (see Figure S9). Theoretical absolute couplings (*V* in cm⁻¹) and EET rate constant (k^{th.} in s⁻¹) computed on the fully-optimised structure for each fragmentation scheme are also given. We note that the solvent specified has been used for both optimising and computing the EET coupling.

Dvad	Solvent	Fragment	BODIPY	fragment	ZnP fr	agment				EET Co	upling		
J		0	$\Delta E_{abs}^{th.}$	f	$\Delta E_{abs}^{th.}$	f	V ^{coul}	V ^{xc}	V^{ovlp}	$V^{\rm PCM}$	V ^{tot}	VWhole	k ^{th.}
6-a	Toluene	MO	2.86	0.564	2.34	0.031	0.5	0.1	0.0	2.9	2.3	3.1	$3.7{ imes}10^{9}$
					2.34	0.019	4.7	0.0	0.0	2.7	2.1		
		MC1	2.86	0.546	2.31	0.050	19.3	0.0	0.0	11.1	8.2	8.2	$2.5 imes 10^{10}$
					2.31	0.046	0.7	0.1	0.0	1.1	0.3		
		MC3	2.86	0.556	2.34	0.031	3.7	0.1	0.0	3.7	0.1	2.8	$3.0{ imes}10^9$
					2.34	0.019	5.5	0.2	0.0	2.9	2.8		
		MC4	2.95	0.622	2.30	0.052	10.2	0.0	0.0	5.2	5.0	7.7	$2.3 imes 10^{10}$
					2.30	0.048	15.5	0.1	0.0	9.6	5.9		
Dyad	Solvent	Fragment	BODIPY	fragment	ZnP fr	agment				EET Co	upling		
			$\Delta E_{abs}^{th.}$	f	$\Delta E_{abs}^{th.}$	f	V ^{coul}	V ^{xc}	V^{ovlp}	V^{PCM}	$V^{\rm tot}$	V ^{Whole}	k ^{th.}
6-a	Benzonitrile	MO	2.86	0.570	2.33	0.029	2.5	0.0	0.0	3.1	0.6	3.6	5.0×10^{9}
					2.33	0.038	10.5	0.1	0.0	7.0	3.6		
		MC1	2.86	0.570	2.29	0.064	25.2	0.1	0.0	14.5	10.8	11.7	$5.2 imes 10^{10}$
					2.29	0.060	9.7	0.0	0.0	5.1	4.6		
		MC3	2.86	0.557	2.33	0.029	4.4	0.0	0.0	3.5	0.9	5.0	9.6×10^{9}
					2.33	0.038	12.0	0.3	0.0	7.4	4.9		10
		MC4	2.95	0.627	2.29	0.066	9.4	0.1	0.0	4.9	4.6	11.0	4.6×10^{10}
					2.29	0.062	24.1	0.1	0.0	14.1	10.0		
Dyad	Solvent	Fragment	BODIPY	fragment	ZnP fr	agment	•			EET Co	upling		
Dyad	Solvent	Fragment	BODIPY $\Delta E_{abs}^{th.}$	fragment f	ZnP fr ΔE ^{th.} abs	agment f	V ^{coul}	V ^{xc}	V ^{ovlp}	EET Co V ^{PCM}	upling V ^{tot}	V ^{Whole}	k ^{th.}
Dyad 6-b	Solvent Benzonitrile	Fragment M0	$\begin{array}{c} \text{BODIPY} \\ \Delta E_{abs}^{\text{th.}} \\ 2.86 \end{array}$	7 fragment <i>f</i> 0.575	ZnP fr $\Delta E_{abs}^{th.}$ 2.33	agment <i>f</i> 0.034	V ^{coul} 5.7	<i>V</i> ^{xc} 0.1	V ^{ovlp} 0.0	EET Co V ^{PCM} 5.1	upling V ^{tot} 0.6	V ^{Whole} 3.8	k ^{th.} 5.5×10 ⁹
Dyad	Solvent Benzonitrile	Fragment M0	$\begin{array}{c} \text{BODIPY}\\ \Delta E_{abs}^{\text{th.}}\\ 2.86 \end{array}$	7 fragment <i>f</i> 0.575	$\begin{array}{c} \text{ZnP fr}\\ \Delta E_{abs}^{\text{th.}}\\ \textbf{2.33}\\ \textbf{2.33}\\ \textbf{2.33} \end{array}$	agment <i>f</i> 0.034 0.033	V ^{coul} 5.7 9.9	V ^{xc} 0.1 0.1	V ^{ovlp} 0.0 0.0	EET Co V ^{PCM} 5.1 6.3	upling V ^{tot} 0.6 3.8	V ^{Whole} 3.8	k ^{th.} 5.5×10 ⁹
Dyad 6-b	Solvent Benzonitrile	Fragment M0 MC1	$\begin{array}{c} \text{BODIPY} \\ \Delta E_{abs}^{\text{th.}} \\ 2.86 \\ 2.86 \end{array}$	7 fragment <u>f</u> 0.575 0.575	ZnP fr $\Delta E_{abs}^{th.}$ 2.33 2.33 2.29	ragment f 0.034 0.033 0.064	V ^{coul} 5.7 9.9 27.0	V ^{xc} 0.1 0.1 0.1	V ^{ovlp} 0.0 0.0 0.0	EET Co V ^{PCM} 5.1 6.3 15.5	U^{tot} 0.6 3.8 11.6	V ^{Whole} 3.8 11.8	$k^{\text{th.}}$ 5.5×10 ⁹ 5.3×10 ⁹
Dyad 6-b	Solvent Benzonitrile	Fragment M0 MC1	BODIPY $\Delta E_{abs}^{th.}$ 2.86 2.86	7 fragment <i>f</i> 0.575 0.575		agment <i>f</i> 0.034 0.033 0.064 0.056	V ^{coul} 5.7 9.9 27.0 4.2	V ^{xc} 0.1 0.1 0.1 0.1	V ^{ovlp} 0.0 0.0 0.0 0.0	EET Co V ^{PCM} 5.1 6.3 15.5 1.9	upling V ^{tot} 0.6 3.8 11.6 2.2	V ^{Whole} 3.8 11.8	$k^{\text{th.}}$ 5.5×10 ⁹ 5.3×10 ⁹
Dyad 6-b	Solvent Benzonitrile	Fragment MO MC1 MC3	$\begin{array}{c} \text{BODIPY}\\ \Delta E_{abs}^{\text{th.}}\\ 2.86\\ 2.86\\ 2.86\\ 2.86\end{array}$	7 fragment <i>f</i> 0.575 0.575 0.564	ZnP fr <u>AE^{th.}</u> 2.33 2.33 2.29 2.29 2.29 2.33 2.29	agment f 0.034 0.033 0.064 0.056 0.034 0.034	V ^{coul} 5.7 9.9 27.0 4.2 8.0	V ^{xc} 0.1 0.1 0.1 0.1 0.1	V ^{ovlp} 0.0 0.0 0.0 0.0 0.0	EET Co V ^{PCM} 5.1 6.3 15.5 1.9 5.6	upling V ^{tot} 0.6 3.8 11.6 2.2 2.4	V ^{Whole} 3.8 11.8 5.2	$\begin{array}{c} k^{\text{th.}} \\ 5.5 \times 10^9 \\ 5.3 \times 10^9 \\ 1.1 \times 10^{10} \end{array}$
Dyad	Solvent Benzonitrile	Fragment M0 MC1 MC3	BODIPY ΔE ^{th.} 2.86 2.86 2.86	7 fragment <i>f</i> 0.575 0.575 0.564 0.646	ZnP fr <u>AE^{th.}</u> 2.33 2.33 2.29 2.29 2.29 2.33 2.33 2.33 2.33	agment f 0.034 0.033 0.064 0.056 0.034 0.033 0.062	V ^{coul} 5.7 9.9 27.0 4.2 8.0 10.9	V ^{xc} 0.1 0.1 0.1 0.1 0.1 0.3	V ^{ovlp} 0.0 0.0 0.0 0.0 0.0 0.0	EET Co V ^{PCM} 5.1 6.3 15.5 1.9 5.6 6.5	upling V ^{tot} 0.6 3.8 11.6 2.2 2.4 4.7 1.2	V ^{Whole} 3.8 11.8 5.2	k ^{th.} 5.5×10^9 5.3×10^9 1.1×10^{10}
Dyad	Solvent Benzonitrile	Fragment MO MC1 MC3 MC4	BODIPY ΔE ^{th.} 2.86 2.86 2.86 2.86 2.96	7 fragment <i>f</i> 0.575 0.575 0.564 0.646	ZnP fr <u>AE^{th.}</u> 2.33 2.33 2.29 2.29 2.33 2.33 2.33 2.33 2.33 2.33 2.33	agment f 0.034 0.033 0.064 0.056 0.034 0.033 0.062 0.062	V ^{coul} 5.7 9.9 27.0 4.2 8.0 10.9 9.1	V ^{xc} 0.1 0.1 0.1 0.1 0.1 0.3 0.0	V ^{ovlp} 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$ \begin{array}{c} \text{EET Co} \\ V^{\text{PCM}} \\ 5.1 \\ 6.3 \\ 15.5 \\ 1.9 \\ 5.6 \\ 6.5 \\ 4.9 \\ 14.2 \\ \end{array} $	upling V ^{tot} 0.6 3.8 11.6 2.2 2.4 4.7 4.2 10.0	V ^{Whole} 3.8 11.8 5.2 10.9	$\frac{k^{\text{th.}}}{5.5 \times 10^9}$ 5.3×10^9 1.1×10^{10} 4.5×10^9
Dyad 6-b	Solvent Benzonitrile	Fragment MO MC1 MC3 MC4	BODIPY ΔE th . 2.86 2.86 2.86 2.86 2.96	7 fragment <i>f</i> 0.575 0.575 0.564 0.646	$\begin{array}{c} \text{ZnP fr} \\ \underline{\Delta E_{abs}^{th.}} \\ 2.33 \\ 2.33 \\ 2.29 \\ 2.29 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.29 \\ 2.29 \\ 2.29 \end{array}$	agment f 0.034 0.033 0.064 0.056 0.034 0.033 0.062 0.062	V ^{coul} 5.7 9.9 27.0 4.2 8.0 10.9 9.1 24.4	$V^{xc} = 0.1 = 0.1 = 0.1 = 0.1 = 0.1 = 0.1 = 0.1 = 0.3 = 0.0 = 0.1 = 0$	$\begin{array}{c} V^{\rm ovlp} \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} \text{EET Co} \\ V^{\text{PCM}} \\ \hline 5.1 \\ 6.3 \\ 15.5 \\ 1.9 \\ 5.6 \\ 6.5 \\ 4.9 \\ 14.3 \end{array}$	upling V ^{tot} 0.6 3.8 11.6 2.2 2.4 4.7 4.2 10.0	V ^{Whole} 3.8 11.8 5.2 10.9	$\frac{k^{\text{th.}}}{5.5 \times 10^9}$ 5.3×10^9 1.1×10^{10} 4.5×10^9
Dyad 6-b	Solvent Benzonitrile Solvent	Fragment MO MC1 MC3 MC4 Fragment	BODIPY ΔE th . 2.86 2.86 2.86 2.96 BODIPY	7 fragment <i>f</i> 0.575 0.575 0.564 0.646 7 fragment	ZnP fr <u>AE^{th.}</u> 2.33 2.29 2.29 2.33 2.33 2.33 2.33 2.29 2.29 2.29 2.29 2.29 2.29 2.29 2.29 2.29	agment <i>f</i> 0.034 0.033 0.064 0.056 0.034 0.033 0.062 0.062 agment	V ^{coul} 5.7 9.9 27.0 4.2 8.0 10.9 9.1 24.4	$V^{xc} = 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.3 \\ 0.0 \\ 0.1 \\ 0$	V ^{ovlp} 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$ \begin{array}{c} \text{EET Co} \\ V^{\text{PCM}} \\ 5.1 \\ 6.3 \\ 15.5 \\ 1.9 \\ 5.6 \\ 6.5 \\ 4.9 \\ 14.3 \\ \end{array} $	upling V ^{tot} 0.6 3.8 11.6 2.2 2.4 4.7 4.2 10.0 upling	V ^{Whole} 3.8 11.8 5.2 10.9	$\frac{k^{\text{th.}}}{5.5 \times 10^9}$ 5.3×10^9 1.1×10^{10} 4.5×10^9
Dyad 6-b Dyad	Solvent Benzonitrile Solvent	Fragment MO MC1 MC3 MC4 Fragment	$\begin{array}{c} \text{BODIPY}\\ \Delta E_{abs}^{\text{th.}}\\ 2.86\\ 2.86\\ 2.86\\ 2.96\\ \hline\\ \text{BODIPY}\\ \Delta E_{abs}^{\text{th.}}\end{array}$	7 fragment <i>f</i> 0.575 0.575 0.564 0.646 7 fragment <i>f</i>	$ \begin{array}{c} {\rm ZnP\ fr} \\ \Delta E^{\rm th.}_{abs} \\ 2.33 \\ 2.29 \\ 2.29 \\ 2.29 \\ 2.33 \\ 2.33 \\ 2.29 \\ 2.29 \\ 2.29 \\ 2.29 \\ {\rm ZnP\ fr} \\ \Delta E^{\rm th.}_{abs} \end{array} $	agment <i>f</i> 0.034 0.033 0.064 0.056 0.034 0.033 0.062 0.062 agment <i>f</i>	V ^{coul} 5.7 9.9 27.0 4.2 8.0 10.9 9.1 24.4	V ^{xc} 0.1 0.1 0.1 0.1 0.3 0.0 0.1 V ^{xc}	V ^{ovlp} 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 V ^{ovlp}	$\begin{array}{c} \text{EET Co} \\ V^{\text{PCM}} \\ \hline 5.1 \\ 6.3 \\ 15.5 \\ 1.9 \\ 5.6 \\ 6.5 \\ 4.9 \\ 14.3 \\ \hline \text{EET Co} \\ V^{\text{PCM}} \end{array}$	upling V ^{tot} 0.6 3.8 11.6 2.2 2.4 4.7 4.2 10.0 upling V ^{tot}	V ^{Whole} 3.8 11.8 5.2 10.9	$\frac{k^{\text{th.}}}{5.5 \times 10^9}$ 5.3×10^9 1.1×10^{10} 4.5×10^9 $k^{\text{th.}}$
Dyad 6-b Dyad 6-c	Solvent Benzonitrile Solvent Benzonitrile	Fragment MO MC1 MC3 MC4 Fragment MO	BODIPY ΔE ^{th.} 2.86 2.86 2.86 2.96 BODIPY ΔE ^{th.} 2.87	7 fragment <i>f</i> 0.575 0.575 0.564 0.646 7 fragment <i>f</i> 0.601	$\begin{array}{c} {\rm ZnP~fr}\\ \Delta E_{abs}^{\rm th}\\ 2.33\\ 2.33\\ 2.29\\ 2.29\\ 2.29\\ 2.33\\ 2.33\\ 2.29\\ 2.29\\ 2.29\\ 2.29\\ {\rm ZnP~fr}\\ \Delta E_{abs}^{\rm th}\\ 2.33\\ \end{array}$	agment <i>f</i> 0.034 0.033 0.064 0.034 0.033 0.062 0.062 agment <i>f</i> 0.030	V ^{coul} 5.7 9.9 27.0 4.2 8.0 10.9 9.1 24.4 V ^{coul} 3.1	$V^{xc} = 0.1 = 0.1 = 0.1 = 0.1 = 0.1 = 0.1 = 0.1 = 0.1 = 0.0 = 0.1 = 0.0 = 0.1 = 0.0 = 0.1 = 0.0 = 0$	Vovlp 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c} \text{EET Co} \\ V^{\text{PCM}} \\ \hline 5.1 \\ 6.3 \\ 15.5 \\ 1.9 \\ 5.6 \\ 6.5 \\ 4.9 \\ 14.3 \\ \hline \text{EET Co} \\ V^{\text{PCM}} \\ \hline 3.5 \\ \end{array}$	$\begin{tabular}{ c c c c } \hline upling V^{tot} \\ \hline 0.6 \\ 3.8 \\ 11.6 \\ 2.2 \\ 2.4 \\ 4.7 \\ 4.2 \\ 10.0 \\ \hline upling V^{tot} \\ \hline 0.4 \\ \hline 0.4 \end{tabular}$	V ^{Whole} 3.8 11.8 5.2 10.9 V ^{Whole} 3.7	$\frac{k^{\text{th.}}}{5.5 \times 10^9}$ 5.3×10^9 1.1×10^{10} 4.5×10^9 $\frac{k^{\text{th.}}}{5.3 \times 10^9}$
Dyad 6-b Dyad 6-c	Solvent Benzonitrile Solvent Benzonitrile	Fragment MO MC1 MC3 MC4 Fragment MO	BODIPY ΔE ^{th.} 2.86 2.86 2.86 2.96 BODIPY ΔE ^{th.} 2.87	7 fragment <i>f</i> 0.575 0.575 0.564 0.646 7 fragment <i>f</i> 0.601	$\begin{array}{c} {\rm ZnP~fr}\\ \Delta E_{abs}^{\rm th}\\ 2.33\\ 2.33\\ 2.29\\ 2.29\\ 2.33\\ 2.33\\ 2.33\\ 2.29\\ 2.29\\ 2.29\\ 2.29\\ 2.29\\ 2.33\\$	agment <i>f</i> 0.034 0.033 0.064 0.036 0.034 0.033 0.062 0.062 agment <i>f</i> 0.030 0.038	V ^{coul} 5.7 9.9 27.0 4.2 8.0 10.9 9.1 24.4 V ^{coul} 3.1 10.7	$\frac{V^{\text{xc}}}{0.1}$ 0.1 0.1 0.1 0.1 0.3 0.0 0.1 $\frac{V^{\text{xc}}}{0.0}$ 0.1	Vovlp 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c} \text{EET Co} \\ V^{\text{PCM}} \\ \hline 5.1 \\ 6.3 \\ 15.5 \\ 1.9 \\ 5.6 \\ 6.5 \\ 4.9 \\ 14.3 \\ \hline \\ \text{EET Co} \\ V^{\text{PCM}} \\ \hline \\ 3.5 \\ 7.1 \\ 7.1 \\ \hline \end{array}$	upling V ^{tot} 0.6 3.8 11.6 2.2 2.4 4.7 4.2 10.0 upling V ^{tot} 0.4 3.7	V ^{Whole} 3.8 11.8 5.2 10.9 V ^{Whole} 3.7	$\frac{k^{\text{th.}}}{5.5 \times 10^9}$ 5.3×10^9 1.1×10^{10} 4.5×10^9 $\frac{k^{\text{th.}}}{5.3 \times 10^9}$
Dyad 6-b Dyad 6-c	Solvent Benzonitrile Solvent Benzonitrile	Fragment MO MC1 MC3 MC4 Fragment MO MC1	BODIPY ΔE ^{th.} abs 2.86 2.86 2.86 2.86 2.96 BODIPY ΔE ^{th.} abs 2.87 2.87	7 fragment <i>f</i> 0.575 0.575 0.564 0.646 7 fragment <i>f</i> 0.601 0.601	ZnP fr <u>AEth.</u> 2.33 2.29 2.29 2.29 2.33 2.33 2.33 2.29 2.29 2.29 2.29 2.33 2.33 2.29 2.29 2.29 2.29 2.33 2.29 2.29 2.33 2.29 2.29 2.33 2.33 2.29 2.29 2.33 2.33 2.29 2.29 2.33 2.33 2.29 2.29 2.33 2.33 2.29 2.29 2.33 2.33 2.29 2.29 2.33 2.33 2.29 2.29 2.29 2.33 2.29 2.33 2.39 2.39 2.39 2.39 2.33 2.33 2.33 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.99	agment f 0.034 0.033 0.064 0.056 0.034 0.033 0.062 0.062 agment f 0.030 0.038 0.064	V ^{coul} 5.7 9.9 27.0 4.2 8.0 10.9 9.1 24.4 V ^{coul} 3.1 10.7 25.5	$ \begin{array}{r} V^{xc} \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.3 \\ 0.0 \\ 0.1 \\ V^{xc} \\ 0.0 \\ 0.1 \\ 0.0 \\ 0.0 \\ 0.1 \\ 0.0 \\ 0.0 \\ 0.1 \\ 0.0 \\ 0.0 \\ 0.1 \\ 0.0 \\ 0.0 \\ 0.1 \\ 0.0 \\ 0.0 \\ 0.1 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.1 \\ 0.0 \\ 0$	Vovlp 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c} \text{EET Co} \\ V^{\text{PCM}} \\ \hline 5.1 \\ 6.3 \\ 15.5 \\ 1.9 \\ 5.6 \\ 6.5 \\ 4.9 \\ 14.3 \\ \hline \text{EET Co} \\ V^{\text{PCM}} \\ \hline 3.5 \\ 7.1 \\ 14.8 \\ \hline 14.8 \\ \hline \end{array}$	$\begin{tabular}{ c c c c c } \hline upling & V^{tot} \\\hline \hline 0.6 & 3.8 \\\hline 11.6 & 2.2 \\\hline 2.4 & 4.7 \\\hline 4.2 & 10.0 \\\hline \hline 4.2 & 10.0 \\\hline \hline upling & V^{tot} \\\hline \hline 0.4 & 3.7 \\\hline 10.8 & 1.7 \\\hline 10.8 & 1.7 \\\hline \hline 0.4 & 3.7 \\\hline 10.8 & 1.7 \\\hline \hline 0.4 & 1.7 \\\hline 0$	VWhole 3.8 11.8 5.2 10.9 VWhole 3.7 11.8	$\frac{k^{\text{th.}}}{5.5 \times 10^9}$ 5.3×10^9 1.1×10^{10} 4.5×10^9 $k^{\text{th.}}$ 5.3×10^9 5.3×10^{10}
Dyad 6-b Dyad 6-c	Solvent Benzonitrile Solvent Benzonitrile	Fragment MO MC1 MC3 MC4 Fragment MO MC1	BODIPY ΔE th . 2.86 2.86 2.86 2.96 BODIPY ΔE th . 2.87 2.87	7 fragment <i>f</i> 0.575 0.575 0.564 0.646 7 fragment <i>f</i> 0.601 0.601 0.601	ZnP fr $\Delta E_{abs}^{th.}$ 2.33 2.29 2.29 2.29 2.33 2.33 2.29 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.29 2.33 2.33 2.33 2.33 2.29 2.33 2.33 2.33 2.29 2.33 2.33 2.33 2.29 2.33 2.33 2.29 2.33 2.29 2.33 2.29 2.33 2.29 2.33 2.29 2.33 2.29 2.29 2.29 2.33 2.29	agment f 0.034 0.033 0.064 0.056 0.034 0.033 0.062 0.062 agment f 0.030 0.038 0.064 0.039 0.064 0.059	V ^{coul} 5.7 9.9 27.0 4.2 8.0 10.9 9.1 24.4 V ^{coul} 3.1 10.7 25.5 10.1	$\begin{array}{c} V^{\rm xc} \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.0 \\ 0.1 \\ \end{array}$	V ^{ovlp} 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	$\begin{array}{c} \text{EET Co} \\ V^{\text{PCM}} \\ \hline 5.1 \\ 6.3 \\ 15.5 \\ 1.9 \\ 5.6 \\ 6.5 \\ 4.9 \\ 14.3 \\ \hline \text{EET Co} \\ V^{\text{PCM}} \\ \hline 3.5 \\ 7.1 \\ 14.8 \\ 5.3 \\ 1.0 \\ \end{array}$	$\begin{tabular}{ c c c c c } \hline upling V^{tot} \\\hline 0.6 \\ 3.8 \\ 11.6 \\ 2.2 \\ 2.4 \\ 4.7 \\ 4.2 \\ 10.0 \\\hline upling V^{tot} \\\hline 0.4 \\ 3.7 \\ 10.8 \\ 4.7 \\ 1.0 \\\hline \end{tabular}$	V ^{Whole} 3.8 11.8 5.2 10.9 V ^{Whole} 3.7 11.8	$\frac{k^{\text{th.}}}{5.5 \times 10^9}$ 5.3×10^9 1.1×10^{10} 4.5×10^9 $\frac{k^{\text{th.}}}{5.3 \times 10^9}$ 5.3×10^{10} 1.4×10^{10}
Dyad 6-b Dyad 6-c	Solvent Benzonitrile Solvent Benzonitrile	Fragment MO MC1 MC3 MC4 Fragment MO MC1 MC3	BODIPY ΔE th . 2.86 2.86 2.86 2.96 BODIPY ΔE th . 2.87 2.87 2.87	7 fragment <i>f</i> 0.575 0.575 0.564 0.646 7 fragment <i>f</i> 0.601 0.601 0.590	$\begin{array}{c} {\rm ZnP\ fr}\\ \Delta E_{abs}^{\rm th.}\\ 2.33\\ 2.33\\ 2.29\\ 2.29\\ 2.33\\ 2.33\\ 2.33\\ 2.29\\ 2.29\\ 2.29\\ 2.29\\ 2.33\\ 2.33\\ 2.33\\ 2.29\\ 2.33\\ 2.29\\ 2.29\\ 2.33\\ 2.29\\ 2.33\\ 2.29\\ 2.33\\ 2.29\\ 2.33\\ 2.33\\ 2.29\\ 2.33\\ 2.33\\ 2.29\\ 2.33\\ 2.3$	agment f 0.034 0.033 0.064 0.056 0.034 0.033 0.062 0.062 agment f 0.030 0.038 0.064 0.059 0.030 0.030	V ^{coul} 5.7 9.9 27.0 4.2 8.0 10.9 9.1 24.4 V ^{coul} 3.1 10.7 25.5 10.1 5.0	$\begin{array}{c} V^{\rm xc} \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.3 \\ 0.0 \\ 0.1 \\ 0.0 \\ $	$\frac{V^{\text{ovlp}}}{0.0}$ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	$\begin{array}{c} \text{EET Co} \\ V^{\text{PCM}} \\ \hline 5.1 \\ 6.3 \\ 15.5 \\ 1.9 \\ 5.6 \\ 6.5 \\ 4.9 \\ 14.3 \\ \hline \text{EET Co} \\ V^{\text{PCM}} \\ \hline 3.5 \\ 7.1 \\ 14.8 \\ 5.3 \\ 4.0 \\ 7.5 \\ \end{array}$	$\begin{array}{r} \text{upling} \\ V^{\text{tot}} \\ \hline 0.6 \\ 3.8 \\ 11.6 \\ 2.2 \\ 2.4 \\ 4.7 \\ 4.2 \\ 10.0 \\ \hline upling \\ V^{\text{tot}} \\ 0.4 \\ 3.7 \\ 10.8 \\ 4.7 \\ 1.0 \\ 5.1 \\ \end{array}$	V ^{Whole} 3.8 11.8 5.2 10.9 V ^{Whole} 3.7 11.8 5.2	$\frac{k^{\text{th.}}}{5.5 \times 10^9}$ 5.3×10^9 1.1×10^{10} 4.5×10^9 $\frac{k^{\text{th.}}}{5.3 \times 10^9}$ 5.3×10^{10} 1.4×10^{10}
Dyad 6-b Dyad 6-c	Solvent Benzonitrile Solvent Benzonitrile	Fragment MO MC1 MC3 MC4 Fragment MO MC1 MC3	BODIPY ΔE th . 2.86 2.86 2.86 2.96 BODIPY ΔE th . 2.87 2.87 2.87 2.87	? fragment f 0.575 0.575 0.564 0.646 ? fragment f 0.601 0.590 0.660	$\begin{array}{c} {\rm ZnP\ fr}\\ \Delta E_{abs}^{\rm th.}\\ 2.33\\ 2.33\\ 2.29\\ 2.29\\ 2.33\\ 2.33\\ 2.29\\ 2.29\\ 2.29\\ 2.29\\ 2.29\\ 2.29\\ 2.33\\ 2.33\\ 2.29\\ 2.33\\ 2.29\\ 2.33\\ 2.33\\ 2.29\\ 2.33\\ 2.33\\ 2.29\\ 2.33\\ 2.33\\ 2.29\\ 2.33\\ 2.33\\ 2.29\\ 2.33\\ 2.33\\ 2.29\\ 2.33\\ 2.33\\ 2.29\\ 2.33\\ 2.33\\ 2.29\\ 2.33\\ 2.33\\ 2.29\\ 2.33\\ 2.33\\ 2.29\\ 2.33\\ 2.33\\ 2.29\\ 2.33\\ 2.33\\ 2.29\\ 2.33\\ 2.33\\ 2.29\\ 2.33\\ 2.35\\ 2.3$	agment f 0.034 0.033 0.064 0.056 0.034 0.033 0.062 0.062 agment f 0.030 0.038 0.064 0.059 0.030 0.038 0.064 0.059 0.030	V ^{coul} 5.7 9.9 27.0 4.2 8.0 10.9 9.1 24.4 V ^{coul} 3.1 10.7 25.5 10.1 5.0 12.3 8.0	$\begin{array}{c} V^{\rm xc} \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.3 \\ 0.0 \\ 0.1 \\ 0.0 \\ 0.1 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.2 \\ 0.1 \\ 0.2 \\ $	$\frac{V^{\text{ovlp}}}{0.0}$ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	$\begin{array}{c} \text{EET Co} \\ V^{\text{PCM}} \\ \hline 5.1 \\ 6.3 \\ 15.5 \\ 1.9 \\ 5.6 \\ 6.5 \\ 4.9 \\ 14.3 \\ \hline \text{EET Co} \\ V^{\text{PCM}} \\ \hline 3.5 \\ 7.1 \\ 14.8 \\ 5.3 \\ 4.0 \\ 7.5 \\ 4.6 \\ \hline \end{array}$	$\begin{tabular}{ c c c c c } \hline upling V^{tot} \\\hline 0.6 \\ 3.8 \\ 11.6 \\ 2.2 \\ 2.4 \\ 4.7 \\ 4.2 \\ 10.0 \\ \hline upling V^{tot} \\\hline 0.4 \\ 3.7 \\ 10.8 \\ 4.7 \\ 1.0 \\ 5.1 \\ 4.2 \\ \hline \end{tabular}$	VWhole 3.8 11.8 5.2 10.9 VWhole 3.7 11.8 5.2 11.0	$\frac{k^{\text{th.}}}{5.5 \times 10^9}$ 5.3×10^9 1.1×10^{10} 4.5×10^9 $k^{\text{th.}}$ 5.3×10^9 5.3×10^{10} 1.4×10^{10} 4.5×10^{10}
Dyad 6-b Dyad 6-c	Solvent Benzonitrile Solvent Benzonitrile	Fragment MO MC1 MC3 MC4 Fragment MO MC1 MC3 MC4	BODIPY ΔE ^{th.} 2.86 2.86 2.86 2.96 BODIPY ΔE ^{th.} 2.87 2.87 2.87 2.87 2.87 2.96	7 fragment <i>f</i> 0.575 0.575 0.564 0.646 7 fragment <i>f</i> 0.601 0.601 0.590 0.669	ZnP fr $\Delta E_{abs}^{th.}$ 2.33 2.29 2.29 2.33 2.33 2.29 2.29 2.29 2.29 2.29 2.29 2.29 2.29 2.29 2.33 2.33 2.29 2.33 2.33 2.29 2.33 2.29 2.33 2.33 2.29 2.33 2.33 2.29 2.33 2.33 2.29 2.33 2.33 2.33 2.33 2.29 2.33 2.33 2.29 2.29 2.29 2.33 2.29 2.29 2.33 2.29 2.29 2.29 2.33 2.29 2.33 2.29 2.33 2.33 2.33 2.33 2.33 2.33 2.29 2.33 2.33 2.33 2.33 2.33 2.29 2.33 2.39 2.33 2.30	agment f 0.034 0.033 0.064 0.056 0.034 0.033 0.062 0.062 agment f 0.030 0.038 0.064 0.059 0.030 0.038 0.064 0.059 0.030 0.038 0.065 0.065	V ^{coul} 5.7 9.9 27.0 4.2 8.0 10.9 9.1 24.4 V ^{coul} 3.1 10.7 25.5 10.1 5.0 12.3 8.9 24.7	$\begin{array}{c} V^{\rm xc} \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.3 \\ 0.0 \\ 0.1 \\ 0.0 \\ 0.1 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.1 \\ $	$\begin{array}{c} V^{\text{ovlp}} \\ \hline 0.0 \\ 0$	$\begin{array}{c} \text{EET Co} \\ V^{\text{PCM}} \\ \hline 5.1 \\ 6.3 \\ 15.5 \\ 1.9 \\ 5.6 \\ 6.5 \\ 4.9 \\ 14.3 \\ \hline \text{EET Co} \\ V^{\text{PCM}} \\ \hline 3.5 \\ 7.1 \\ 14.8 \\ 5.3 \\ 4.0 \\ 7.5 \\ 4.6 \\ 14.5 \\ \hline \end{array}$	$\begin{tabular}{ c c c c c } \hline upling V^{tot} \\\hline 0.6 \\ 3.8 \\ 11.6 \\ 2.2 \\ 2.4 \\ 4.7 \\ 4.2 \\ 10.0 \\ \hline 10.0 \\ \hline 0.4 \\ 3.7 \\ 10.8 \\ 4.7 \\ 1.0 \\ 5.1 \\ 4.3 \\ 10.1 \\ \hline 0.1 \\ \hline $	V ^{Whole} 3.8 11.8 5.2 10.9 V ^{Whole} 3.7 11.8 5.2 11.0	$\frac{k^{\text{th.}}}{5.5 \times 10^9}$ 5.3×10^9 1.1×10^{10} 4.5×10^9 $k^{\text{th.}}$ 5.3×10^9 5.3×10^{10} 1.4×10^{10} 4.6×10^{10}

S13 Fragment definition in dyad 8

Fig. S10 Representation of the different fragmentation schemes considered in dyad 8.

Table S13 Calcula	ted transition er	nergies ($\Delta E_{abs}^{th.}$	in eV) and	oscillator	strengths	(f) of the	excited-sta	tes of the	different fra	agments ir	nvolved in the
electronic coupling	in 8 (see Figur	e S10). Theo	retical abso	lute coupl	ings (V in	cm^{-1}) and	d EET rate	constant ($k^{th.}$ in s^{-1})	computed	d on the fully-
optimised structure	for each fragme	ntation schem	e are also gi	ven.							

Fragmentation	BODIPY	fragment	ZnP fr	agment				EET Co	upling		
scheme	$\Delta E_{abs}^{th.}$	f	$\Delta E_{abs}^{th.}$	f	V ^{coul}	V ^{xc}	V ^{ovlp}	V^{PCM}	V^{tot}	V ^{Whole}	k ^{th.}
M0	2.86	0.655	2.33	0.025	18.4	0.0	0.0	7.8	10.6	16.7	$5.1 imes 10^{10}$
			2.34	0.030	22.7	0.0	0.0	9.8	12.9		
M1	2.91	0.618	2.31	0.033	15.1	0.0	0.0	6.3	8.9	18.5	6.2×10^{10}
			2.31	0.043	28.2	0.0	0.0	12.0	16.2		
MC1	2.91	0.618	2.31	0.035	3.8	0.0	0.0	1.4	2.4	17.2	5.4×10^{10}
			2.31	0.043	29.6	0.0	0.0	12.6	17.1		
MC3	2.91	0.583	2.33	0.025	17.7	0.0	0.0	7.4	10.3	15.9	4.6×10^{10}
			2.34	0.030	21.4	0.0	0.0	9.2	12.1		
MC4	2.86	0.655	2.31	0.034	3.8	0.0	0.0	1.5	2.4	17.2	5.4×10^{10}
			2.31	0.043	29.7	0.0	0.0	12.7	17.0		
MC5	2.91	0.607	2.31	0.035	3.7	0.0	0.0	1.4	2.3	17.2	5.4×10^{10}
			2.31	0.043	29.6	0.0	0.0	12.5	17.0		

Fig. S11 Representation of the different fragmentation schemes considered in dyad 9.

Table S14 Calculated transition energies ($\Delta E_{abs}^{th.}$ in eV) and oscillator strengths (*f*) of the excited-states of the different fragments involved in the electronic coupling in **5** (see Figure S11). Theoretical absolute couplings (*V* in cm⁻¹) and EET rate constant (k^{th.} in s⁻¹) computed on the fully-optimised structure for each fragmentation scheme are also given.

Fragmentation	BODIPY	fragment	Porphyr	rin fragment				EET Co	upling		
scheme	$\Delta E_{abs}^{th.}$	f	$\Delta E_{abs}^{th.}$	f	V ^{coul}	V ^{xc}	V ^{ovlp}	$V^{\rm PCM}$	$V^{\rm tot}$	V ^{Whole}	k ^{th.}
MC1	2.83	0.675	2.24	0.062	76.9	0.6	0.0	35.1	41.2	46.5	3.0×10^{11}
			2.25	0.058	42.0	0.4	0.0	20.8	21.6		
MC4	2.89	0.644	2.24	0.065	86.4	0.8	0.0	39.3	46.3	48.0	3.3×10^{11}
			2.25	0.055	25.8	0.4	0.0	13.4	12.8		

S15 Fragment definition in dyad 10

Table S15 Calculated transition energies ($\Delta E_{abs}^{th.}$ in eV) and oscillator strengths (*f*) of the excited-states of the different fragments involved in the electronic coupling in **10** (see Figure S12). Theoretical absolute couplings (*V* in cm⁻¹) and EET rate constant (k^{th.} in s⁻¹) computed on the fully-optimised structure for each fragmentation scheme are also given.

Fragmentation	BODIPY	7 fragment	Phthaloc	yanine fragment				EET Co	upling		
scheme	$\Delta E_{abs}^{th.}$	f	$\Delta E_{abs}^{th.}$	f	V ^{coul}	V ^{xc}	V ^{ovlp}	V^{PCM}	$V^{\rm tot}$	V ^{Whole}	k ^{th.}
M1	2.91	0.622	2.01	0.638	11.0	0.0	0.0	4.7	6.3	11.7	2.1×10^{9}
			2.02	0.636	16.7	0.0	0.0	6.9	9.8		
MC1	2.91	0.622	1.98	0.725	8.9	0.0	0.0	3.8	5.1	11.7	2.1×10^{9}
			2.02	0.622	18.0	0.0	0.0	7.4	10.6		
MC2	2.89	0.617	2.01	0.638	11.0	0.0	0.0	4.7	6.4	11.7	2.1×10^{9}
			2.02	0.636	16.6	0.0	0.0	6.8	9.8		

S16 Fragment definition in dyad 11

Fig. S13 Representation of the different fragmentation schemes considered in dyad 11.

Table S16 Calculated transition energies ($\Delta E_{abs}^{th.}$ in eV) and oscillator strengths (*f*) of the excited-states of the different fragments involved in the electronic coupling in **11** (see Figure S13). Theoretical absolute couplings (*V* in cm⁻¹) and EET rate constant (k^{th.} in s⁻¹) computed on the fully-optimised structure for each fragmentation scheme are also given.

Fragmentation	BODIP	Y fragment	Subphtl	nalocyanine fragment				EET Co	upling		
scheme	$\Delta E_{abs}^{th.}$	f	$\Delta E_{abs}^{th.}$	f	V ^{coul}	V ^{xc}	V^{ovlp}	V^{PCM}	V^{tot}	V ^{Whole}	k ^{th.}
M0	1.78	1.145	2.45	0.457	28.4	0.0	0.0	11.3	17.1	21.2	4.5×10^{10}
			2.45	0.457	20.7	0.0	0.0	8.2	12.5		
M1	1.82	1.125	2.44	0.446	1.7	0.0	0.0	0.7	1.0	19.8	3.9×10^{10}
			2.44	0.446	33.1	0.0	0.0	13.3	19.7		
M2	1.82	1.125	2.44	0.433	2.1	0.0	0.0	0.9	1.2	19.2	$3.7{ imes}10^{10}$
			2.44	0.441	32.3	0.0	0.0	13.1	19.2		
MC1	1.82	1.125	2.43	0.427	2.1	0.0	0.0	0.9	1.2	19.1	3.6×10^{10}
			2.44	0.440	32.1	0.0	0.0	13.1	19.1		
MC3	1.81	1.118	2.45	0.457	26.1	0.0	0.0	10.6	15.5	19.1	3.6×10^{10}
			2.45	0.457	18.9	0.0	0.0	7.7	11.2		
MC4	1.78	1.145	2.43	0.425	2.1	0.0	0.0	0.9	1.2	19.3	$3.7{ imes}10^{10}$
			2.43	0.425	32.3	0.0	0.0	13.1	19.2		
MC5	1.81	1.119	2.44	0.446	1.6	0.0	0.0	0.6	0.9	19.1	3.6×10^{10}
			2.44	0.446	32.2	0.0	0.0	13.1	19.1		
MC6	1.81	1.122	2.44	0.433	2.1	0.0	0.0	0.9	1.2	19.1	$3.7{ imes}10^{10}$
			2.44	0.441	32.2	0.0	0.0	13.1	19.1		

S17 Spectroscopic informations about the BODIPYs used in the design Section

We note that to allow a direct comparison with the EET process using a zinc porphyrin, i.e., to compare with dyad **5**, we designed dyad **18** although its maximal absorption wavelength (688 nm) is not within the 700-770 region (red region).

Fig. S14 Structure and spectroscopic information for the BODIPYs used in the designed dyads 12-17. These data have been extracted from Refs. 1 (for 12 and 15) and 2 (for 13–14 and 16–17).

Fig. S15 Structure and spectroscopic information for the BODIPYs used in the designed dyads 18-21. These data have been extracted from Refs. 2 (for 18) and 1 (for 19–21).

S18 Fragment definition in ACP-BODIPY dyads

Fig. S16 Representation of the different fragmentation schemes considered in dyad 12 (R=H) and 12-Me (R=CH₃).

Fig. S17 Side (top) and top (bottom) views of the optimised structure of dyad 12.

Table S17 Calculated transition energies ($\Delta E_{abs}^{th.}$ in eV) and oscillator strengths (*f*) of the excited-states of the different fragments involved in the electronic coupling in **12**. Theoretical absolute couplings (*V* in cm⁻¹) and EET rate constant (k^{th.} in s⁻¹) computed on the fully-optimised structure for each fragmentation scheme (see Figure S16) are also given.

Fragmentation	BODIPY	/ fragment	ACP fr	agment				EET Co	upling		
scheme	$\Delta E_{abs}^{th.}$	f	$\Delta E_{abs}^{th.}$	f	V ^{coul}	V ^{xc}	V ^{ovlp}	$V^{\rm PCM}$	V ^{tot}	V ^{Whole}	k ^{th.}
M1	2.50	0.702	2.07	0.395	57.3	0.0	0.0	24.3	33.0	33.0	3.0×10^{11}
			2.07	0.392	3.2	0.0	0.0	2.0	1.2		
MC1	2.49	0.702	2.06	0.399	18.3	0.2	0.0	8.2	10.2	38.6	4.2×10^{11}
			2.09	0.438	63.7	0.0	0.0	26.5	37.2		
MC2	2.48	0.697	2.07	0.395	57.2	0.0	0.0	24.0	33.2	33.2	3.1×10^{11}
			2.07	0.392	3.1	0.0	0.0	1.7	1.4		

Fig. S18 Side (top) and top (bottom) views of the optimised structure of dyad 12-Me.

Table S18 Calculated transition energies ($\Delta E_{abs}^{th.}$ in eV) and oscillator strengths (*f*) of the excited-states of the different fragments involved in the electronic coupling in **12-Me** (see Figure S16). Theoretical absolute couplings (*V* in cm⁻¹) and EET rate constant (k^{th.} in s⁻¹) computed on the fully-optimised structure for each fragmentation scheme (see Figure S16) are also given.

Fragmentation	BODIPY	Y fragment	ACP fr	agment				EET Co	upling		
scheme	$\Delta E_{abs}^{th.}$	f	$\Delta E_{abs}^{th.}$	f	V ^{coul}	V ^{xc}	V ^{ovlp}	$V^{\rm PCM}$	$V^{\rm tot}$	V ^{Whole}	k ^{th.}
M1	2.50	0.700	1.80	0.301	9.6	0.0	0.0	4.8	4.8	13.9	$5.5 imes 10^{10}$
			1.86	0.308	22.6	0.0	0.0	9.6	13.0		
MC1	2.50	0.700	1.81	0.339	12.9	0.0	0.0	5.9	6.9	12.2	4.2×10^{10}
			1.86	0.294	18.1	0.1	0.0	7.9	10.1		
MC2	2.48	0.694	1.80	0.301	9.8	0.0	0.0	4.7	5.1	13.6	$5.2{ imes}10^{10}$
			1.86	0.308	22.5	0.0	0.0	9.9	12.6		

Table S19 Theoretical absolute total couplings (V^{Whole} in cm⁻¹) in dyad **12** when incrementing by 30° the Ψ dihedral angle between the two *meso* phenyls linked through the ethynyl bridge. The value of the angle Φ between the planes of the BODIPY and ZnP as well as the relative electronic energies ($E_{rel.}$ in kcal/mol). The angles are given in degrees. Note that the 0° value corresponds to the fully-optimised geometry. The **MC2** fragmentation is applied.

Increment on Ψ	Angle Ψ	Angle Φ	E _{rel.}	V ^{Whole}
0	-120	26	0.0	33.2
30	-90	45	0.0	19.0
60	-60	70	0.1	11.7
90	-30	85	1.1	6.7
120	0	62	2.3	26.5
150	30	33	1.0	32.2

S21 Additional EET data for 12–21

Table S20 Theoretical absolute couplings (*V* in cm⁻¹) used to compute the total coupling and EET rate constant in the fully-optimised dyads **12–21** reported in Table 7 using the **MC2** fragment definition (see Figure S16). The magnitude of the transition dipole moment of the first transition of the BODIPY fragment ($\mu_{\text{BODIPY}}^{\text{transmitter}}$ in atomic units) is also given.

Dyad	BODIPY/ACP states	V ^{coul}	V ^{xc}	V ^{ovlp}	V ^{PCM}	V ^{tot}	$\mu_{\rm BODIPY}^{\rm tr}$
12	S ₁ /S ₃	57.2	0.0	0.0	24.0	33.2	3.4
	S_1/S_4	3.1	0.0	0.0	1.7	1.4	
13	S_1/S_3	56.8	0.0	0.0	23.8	33.0	3.4
	S_1/S_4	4.9	0.0	0.0	2.4	2.5	
14	S_1/S_3	48.9	0.0	0.0	20.7	28.2	3.2
	S_1/S_4	11.9	0.0	0.0	5.4	6.4	
15	S_1/S_3	88.6	0.2	0.0	38.2	50.2	3.6
	S_1/S_4	103.6	0.5	0.0	48.6	54.5	
16	S ₁ /S ₃	43.7	0.0	0.0	18.4	25.3	4.0
	S_1/S_4	60.5	0.3	0.0	27.8	32.4	
17	S_1/S_3	25.8	0.1	0.0	10.7	15.1	5.0
	S_1/S_4	186.7	0.8	0.0	88.1	97.9	
18	S_1/S_1	100.5	0.8	0.0	41.4	58.3	4.3
	S_1/S_2	46.8	0.0	0.0	19.9	26.9	
19	S_1/S_1	125.7	1.0	0.0	51.4	73.4	4.5
	S_1/S_2	50.2	0.1	0.0	21.2	28.9	
20	S_1/S_1	148.8	0.8	0.0	64.9	83.1	6.0
	S ₁ /S ₂	28.9	0.1	0.0	12.6	16.2	
21	S ₁ /S ₁	135.6	0.6	0.0	57.4	77.7	4.2
	S_1/S_2	40.0	0.1	0.0	16.7	23.2	

S22 EET coupling in dyad 12-asym and 15-sym

Fig. S20 Representation of the BODIPY units 12-asym and 15-sym.

Table S21 Calculated transition energies ($\Delta E_{abs}^{th.}$ in eV) and oscillator strengths (*f*) of the excited-states involved in the electronic coupling in **12-asym** and **15-sym** (see Figure S20). Theoretical absolute couplings (*V* in cm⁻¹) and magnitude of the transition dipole of the first excitation of the BODIPY (μ_{BODIPY}^{tr} in atomic units) are also given. The **MC2** fragmentation scheme (see Figure S16) has been used.

Dyad	BC	DIPY fra	gment	ACP fr	agment			EET (Coupling		
	$\Delta E_{abs}^{th.}$	f	$\mu_{ m BODIPY}^{ m tr}$	$\Delta E_{abs}^{th.}$	f	V ^{coul}	V ^{xc}	V ^{ovlp}	VPCM	V^{tot}	V ^{Whole}
12-asym*	2.69	0.716	3.3	2.07	0.395	37.4	0.0	0.0	15.2	22.3	61.7
				2.07	0.392	104.6	0.6	0.0	46.4	57.6	
12-asym [◊]	2.68	0.706	3.3	2.07	0.395	73.4	0.1	0.0	31.2	42.1	74.0
				2.07	0.392	111.9	0.7	0.0	50.3	60.9	
15-sym [◊]	2.12	0.715	3.7	2.07	0.396	59.0	0.0	0.0	24.4	34.5	34.7
				2.07	0.393	7.1	0.0	0.0	3.0	4.0	
				* not	re-optim	ised					

◇ re-optimised

S23 Effect of the solvent change on the EET in dyad 5

Table S22 Calculated transition energies (ΔE_{abs}^{th} in eV) and oscillator strengths (*f*) of the excited-states of the two fragments involved in the electronic coupling in **5** using the **MC1** fragment definition (see Figure S8). Theoretical absolute couplings (*V* in cm⁻¹) and EET rate constant (kth in s⁻¹) computed on the fully-optimised structure for two different solvent are also given.

Solvent	BODIPY fragment		ZnP fragment		EET Coupling						
	$\Delta E_{abs}^{th.}$	f	$\Delta E_{abs}^{th.}$	f	V ^{coul}	V ^{xc}	V^{ovlp}	$V^{\rm PCM}$	V ^{tot}	V ^{Whole}	k ^{th.}
toluene [◊]	1.99	0.865	2.31	0.047	74.8	1.1	0.0	34.7	39.0	39.0	4.3×10 ¹¹
			2.32	0.027	5.3	0.0	0.0	3.1	2.2		
dimethylsulfoxide [◊]	2.00	0.845	2.31	0.053	77.0	1.2	0.0	32.3	43.5	43.7	5.4×10^{11}
			2.31	0.031	6.8	0.0	0.0	3.5	3.4		
dimethylsulfoxide*	2.00	0.844	2.30	0.066	81.1	1.2	0.0	33.5	46.5	46.5	6.1×10^{11}
			2.31	0.030	1.4	0.0	0.0	0.7	0.7		

 \diamond computed on the geometry optimised in toluene.

* computed on the geometry optimised in dimethylsulfoxide.

References

- 1 Y. Ni and J. Wu, Org. Biomol. Chem., 2014, 12, 3774–3791.
- 2 A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891–4932.