Chemical Dynamics Simulations of Peptide Ion CID. Comparisons between TIK(H⁺)₂ and TLK(H⁺)₂ Fragmentation Dynamics, and with Thermal Simulations

Zahra Homayoon,^a Veronica Macaluso,^b Ana Martin Somer,^b Maria Carolina Nicola Barbosa Muniz,^c Itamar Borges, Jr.,^c William L. Hase,^{a,*} and Riccardo Spezia^{b,*}

> ^aDepartment of Chemistry and Biochemistry Texas Tech University Lubbock, Texas 79409-1061 USA

^bLaboratoire Analyse et Modélisation pour la Biologie et l'Environnement Université d'Evry Val d'Essonne UMR 8587 CNRS-CEA-UEVE Bd. F. Mitterrand, 91025 Evry Cedex, France

> ^cDepartamento de Química Instituto Militar de Engenharia 22291-270, Rio de Janeiro, RJ, Brazil.

SUPPORTING INFORMATION

Figure S1. Number of reactive trajectories as a function of time after the collision with N_2 projectile as obtained from TLK(H⁺)₂ simulation at CE=13 eV. Panel a) shows the counting over the whole simulation time, while panel b) shows a zoom over the first pico-second.

Pathway 3

OH

+ NH3

Pathway 4

x₁+· m/z 174

 a_1^+ m/z 75

H₂C′

+ NH₃

m/z 152.5

HaN

Pathway 10

m/z 317

 $\dot{N}H_3$

Pathway 19

m/z 172.5

Figure S2. Primary dissociation pathways as from Ref. 29 of the manuscript

m/z 287

СООН +

+ NH3

Pathway 5 *1*)

m/z 158.5

, NH₃

ОН

ŅH₃

Pathway 6

Pathway 8

 \dot{CH}_3 + CH_3CHCH_2

Pathway 14

Pathway 15

Pathway 18

Figure S3. Secondary dissociations for TIK(H⁺)₂ primary dissociation pathways at $E_{rel} = 13.0$ eV.

m/z 57

m/z 287

Figure S4. Secondary dissociations for TLK(H^+)₂ primary dissociation pathways at $E_{rel} = 13.0$ eV.

	$TIK(H^+)_2$		$TLK(H^+)_2$	
$E_{rel}(eV)$	10.8	13.0	10.8	13.0
# ions (total)	26	66	21	61
# ions with same	26	61	21	55
m/z				
# ions with	10	14	11	12
intensity $> 2\%$				

 Table S1. Ions occurrence after primary and secondary dissociations.