Supplementary Information

Newly synthesized quercetin derivatives as corrosion inhibitor for mild steel in 1 M HCI: combined experimental and theoretical investigation

Dipankar Sukul,^{a**} Aparesh Pal,^a Sourav Kr. Saha,^{b,c} Sanjoy Satpati,^a Utpal Adhikari,^a Priyabrata Banerjee,^{b,c*}

- ^{c.} Academy of Scientific and Innovative Research, CSIR-CMERI Campus, Durgapur 713209, India.
- *E-mail address: pr_banerjee@cmeri.res.in (P. Banerjee). Tel.: +91 343-6452220; fax: +91-343-2548204

a. Department of Chemistry, National Institute of Technology, Durgapur 713 209, India.

^{**}E-mail address: dipankar.sukul@gmail.com (D. Sukul,). Tel.:+919932244348; fax: +91-343-2547375.

^{b.} Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur 713209, India.

Fig. S1 ¹H NMR of Quercetin

Fig. S2 ¹H NMR of Compound A

Fig. S3 ¹H NMR of Compound B

Fig. S4 FTIR spectra of Quercetin (Q), Compound A (A) and Compound B (B).

Fig. S5 ESI-Mass spectrum of Quercetin

Fig. S6 ESI-Mass spectrum of Compound A

Fig. S8 Bode impedance plot (up)and phase angle plot (down) in absence and presence of compound A

Fig. S9 Bode impedance plot (up)and phase angle plot (down) in absence and presence of compound B

Fig. S10 Arrhenius plots for mild steel in 1 M HCl solution in absence and presence of compound A (up) and compound B (down) (following eqn. 18)

номо

LUMO

Compound A

Compound B

Fig. S11 Optimized geometry and electron distribution in HOMO and LUMO for compound A and B in their mono-protonated state

Fig. S12 Optimized geometry and electron distribution in HOMO and LUMO for compound A and B in their fully protonated state

Fig. S13 Closer side view of equilibrium adsorption configurations of compound A (up) and compound B (down) on Fe (1 10) surface obtained by molecular dynamics simulation. Water molecules are deactivated for claririty.

Exposure Time (h)	Inhibitor	Corrosion Rate (mg cm ⁻² h ⁻¹)	η _w %	
	Uninhibited	5.098		
6	Compound A	0.370	92.7	
	Compound B	0.333	93.5	
	Uninhibited	8.444		
24	Compound A	0.518	93.8	
	Compound B	0.432	94.9	
	Uninhibited	9.777		
48	Compound A	0.530	94.3	
	Compound B	0.456	95.3	
	Uninhibited	11.666		
72	Compound A	0.6913	94.1	
	Compound B	0.5802	95.0	
	Uninhibited	15.209		
96	Compound A	1.444	90.5	
	Compound B	1.333	91.1	

Table S1 Corrosion rate of mild steel in 1 M HCl in presence and absence of Quercetin derivatives atdifferent exposure times at 303K

Table S2. Calculated Fukui functions of the atoms present in Quercetin derivatives

Numbering of atoms of Compound A

Numbering of atoms of compound B

Compound A				Compound B			
Atom		f_k^+	f_k^-	A	Atom	f_k^+	f_k^-
0	(1)	0.045	0.016	0	(1)	0.037	0.017
0	(2)	0.031	0.022	0	(2)	0.032	0.032
N	(3)	0	0.029	N	(3)	0	0.007
N	(4)	0.001	0.074	N	(4)	0.001	0.001
С	(5)	0.026	0.027	С	(5)	0.018	0.036
С	(6)	0.021	0.008	С	(6)	0.023	0.015
С	(7)	0.022	0.015	С	(7)	0.023	0.023
0	(8)	0.1	0.027	0	(8)	0.098	0.028
С	(9)	0.026	0.011	С	(9)	0.021	0.012
0	(10)	0.026	0.016	0	(10)	0.026	0.026
0	(11)	0.029	0.04	0	(11)	0.029	0.035
С	(12)	0.033	0.017	С	(12)	0.035	0.026
С	(13)	0.002	0.014	С	(13)	0.001	0.002
С	(14)	0.037	0.016	С	(14)	0.033	0.022
С	(15)	0.004	0.013	С	(15)	0.005	0.004
С	(16)	0.001	0.009	С	(16)	0	0.001
С	(17)	0.001	0.009	С	(17)	0.001	0.002
С	(18)	0.096	0.015	С	(18)	0.094	0.017
С	(19)	0.001	0.013	C	(19)	0	0.001
С	(20)	0.023	0.024	C	(20)	0.023	0.022
С	(21)	0.041	0.038	C	(21)	0.042	0.035
С	(22)	0.019	0.025	C	(22)	0.019	0.021
0	(23)	0.028	0.046	0	(23)	0.029	0.051
С	(24)	0.04	0.049	C	(24)	0.042	0.054
С	(25)	0.023	0.03	C	(25)	0.023	0.024
С	(26)	0.036	0.017	C	(26)	0.037	0.016
С	(27)	0.04	0.032	C	(27)	0.038	0.027
0	(28)	0.013	0.022	0	(28)	0.014	0.018
С	(29)	0.084	0.028	C	(29)	0.082	0.033
н	(30)	0.012	0.008	C	(30)	0	0.001
н	(31)	0.01	0.013	C	(31)	0	0.001
н	(32)	0.002	0.013	0	(32)	0	0.001
н	(33)	0.002	0.027	N	(33)	0	0.018
н	(34)	0.007	0.012	N	(34)	0.003	0.062
н	(35)	0.006	0.022	C	(35)	0.001	0.01
н	(36)	0.001	0.014	C	(36)	0.004	0.012
н	(37)	0.001	0.011	C	(37)	0.001	0.007
н	(38)	0.001	0.014	C	(38)	0.001	0.007
н	(39)	0.002	0.026	C	(39)	0.001	0.01
н	(40)	0.001	0.012	C	(40)	0	0.004
н	(41)	0.014	0.013	C	(41)	0	0.002

H (42)	0.017	0.016	O (42)	0	0.002
H (43)	0.016	0.01	Н (43)	0.005	0.006
H (44)	0.019	0.014	Н (44)	0.011	0.012
H (45)	0.007	0.009	Н (45)	0.002	0.002
H (46)	0.016	0.012	Н (46)	0.002	0.003
H (47)	0.001	0.01	Н (47)	0.008	0.006
H (48)	0.015	0.008	Н (48)	0.007	0.006
C (49)	0	0.006	Н (49)	0.001	0.002
C (50)	0	0.002	Н (50)	0.001	0.002
H (51)	0	0.005	H (51)	0.001	0.002
H (52)	0	0.01	H (52)	0.003	0.003
H (53)	0	0.002	H (53)	0.001	0.001
H (54)	0	0.003	Н (54)	0.018	0.018
O (55)	0	0.003	H (55)	0.016	0.01
H (56)	0	0.002	Н (56)	0.016	0.011
			Н (57)	0.007	0.008
			H (58)	0.001	0.002
			Н (59)	0.015	0.01
			Н (60)	0	0.001
			H (61)	0	0.002
			H (62)	0	0
			H (63)	0	0.001
			H (64)	0	0
			H (65)	0.002	0.01
			Н (66)	0.001	0.017
			Н (67)	0.006	0.012
			H (68)	0.007	0.013
			Н (69)	0.002	0.011
			Н (70)	0.002	0.009
			H (71)	0.002	0.011
			Н (72)	0.002	0.018
			Н (73)	0.001	0.008
			Н (74)	0.001	0.008
			Н (75)	0.001	0.004
			Н (76)	0.001	0.007
			Н (77)	0	0.002
			H (78)	0	0.002
			Н (79)	0	0.001
			Н (80)	0.014	0.012