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Figure 1: Stress vs. strain curve for magnesian calcite of 2:4 Mg:Ca ratio. Elastic
coefficient E, obtained from line fit of elastic regime at strain rate s = 0.2571.

Table 1: Force field parameters for (Mg,Ca)COs3.

Buckingham A (kcal/mol) r(A) C(keal /mol/A)
Ca O 72908.9819425084  0.271511 0

Ca C 2767265033.43952  0.12 0

Mg O 51374.9602439005  0.255294 0

Mg C 1949939915.70948  0.112832 0

(0] 0) 1472189.58683767  0.198913 643.3662442171
Charges qca,qvg (€) qc (e) qo (e)

+2 +1.123282 -1.041094



Figure 2: Stress vs. strain curve for magnesian calcite of 4:2 Mg:Ca ratio. Elastic
coefficient E, obtained from line fit of elastic regime at strain rate s = 0.2571.
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Figure 3: Stress vs. strain curve for magnesian calcite of 5:1 Mg:Ca ratio. Elastic
coefficient E, obtained from line fit of elastic regime at strain rate s = 0.2s71.
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Figure 4: Stress vs. strain curve for a system with calcite and dolomite interface
along the c-axis. Elastic coefficient £, = 56 GPa obtained from line fit of elastic
regime at strain rate s = 0.1s~'. In comparison, for pure calcite we obtain

E, =56 GPa, and for dolomite we obtain FE, = 66 GPa.



Twinning and fracturing in magnesian calcite
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Figure 5: Graphical representation of the data in Table 1 in the main article.
Probability of deformation twinning (T), alternate twinning (A) and shear frac-
ture (F) during applied uniaxial strain along c-axis in magnesian calcites. The
data were obtained from four independent simulations at each of the six strain
rates: (0.15, 0.2, 0.25, 0.3, 0.4 and 1.0)s~!. For the pure cases, calcite, magne-
site and dolomite, data were obtained from one trajectory for each strain rate.
Values at 50 % Mg concentration to the right corresponds to dolomite.
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Figure 6: Summary of observed deformation twinning (T) and (A) and shear
fracture (F) distribution for uniaxial stress along the c-axis. Results obtained
from independent simulations at each of the six strain rates: (0.15, 0.2, 0.25,
0.3, 0.4 and 1.0)s~ .



Figure 7: Mg?* clusters in different colors from Voronoi tessellation at 1:5
Mg:Ca ratio. Largest cluster shown as surface. Ca2?* are shown as points.
Magnesium ions belonging to the same cluster are represented in the same color.

Figure 8: Mg?* percolating cluster from Voronoi tessellation at 2:4 Mg:Ca ratio.
Cluster shown as surface. Cat are shown as points.



Figure 9: Mg?*t percolating cluster from Voronoi tessellation in dolomite.
ter shown as surface. Ca?* are shown as points.
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Figure 10: Radial distribution function of Ca?* and Mg?* ions in the initial i,
and final f configuration of T and A type deformation. A; and T; are the same
structure.
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Figure 11: Radial distribution function of Ca?* ion pairs and Mg?™ ion pairs in
the initial ¢, and final f configuration of T (left) and A (right) type deformation.
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Figure 12: Volume of the simulation cell as a function of time for A and T type
deformations for four different simulations: 2, 3, 4 and 5. Simulations were
performed at 3:3 Mg:Ca ratio of randomly incorporated Mg?+.
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Figure 13: Deformation response at 1:5 Mg:Ca ratio for 4 random configurations
(config) 1,2,3 and 4.
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Figure 14: Deformation response at 2:4 Mg:Ca ratio for 4 random configurations
(config) 1,2,3 and 4.
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Figure 15: Histogram of distribution of 200 potential energies of configurations
randomly generated at 1:5, 2:4, 3:3, 4:2 and 5:1 Mg:Ca ratios. Standard devi-
ations of the generated energies were of the order og/(E) = 0.01. Points show
potential energies of 4 selected configurations discussed in the results in the
main paper. “dol” (yellow point) is for dolomite.
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Figure 16: Stress vs. strain curve for two different periodic supercells of 5 x 5 x 2
and 7 x 5 x 2 unit cells for dolomite. Elastic coefficients E, obtained from line
fit in the elastic regime at strain rate s = 0.2s71.
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Figure 17: Stress wvs. strain curve for two different periodic supercells of 5 x
5x 2 and 7 x 4 x 2 unit cells for magnesian calcite at 3:3 Mg:Ca ratio. Elastic
coeficients F, obtained from line fit in the elastic regime at strain rate s =
0.2s7 %



