Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Supplementary Information Plastic deformation and twinning mechanisms in magnesian calcites: a non-equilibrium computer simulation study

Sanha Lee, Gøran Brekke Svaland, Fernando Bresme

Department of Chemistry Imperial College London

Figure 1: Stress vs. strain curve for magnesian calcite of 2:4 Mg:Ca ratio. Elastic coefficient E_z obtained from line fit of elastic regime at strain rate $s = 0.2 s^{-1}$.

Buckingham	A(kcal/mol)	$ ({A})$	$\rm C(kcal/mol/Å)$								
Ca O	72908.9819425084	0.271511	0								
Ca C	2767265033.43952	0.12	0								
Mg O	51374.9602439005	0.255294	0								
Mg C	1949939915.70948	0.112832	0								
0 0	1472189.58683767	0.198913	643.3662442171								
Charges	$q_{\rm Ca}, q_{\rm Mg}$ (e)	$q_{\rm C}~({\rm e})$	$q_{\rm O}~({\rm e})$								
	+2	+1.123282	-1.041094								

Table 1: Force field parameters for $(Mg,Ca)CO_3$.

Figure 2: Stress vs. strain curve for magnesian calcite of 4:2 Mg:Ca ratio. Elastic coefficient E_z obtained from line fit of elastic regime at strain rate $s = 0.2 s^{-1}$.

Figure 3: Stress vs. strain curve for magnesian calcite of 5:1 Mg:Ca ratio. Elastic coefficient E_z obtained from line fit of elastic regime at strain rate $s = 0.2 s^{-1}$.

Figure 4: Stress vs. strain curve for a system with calcite and dolomite interface along the c-axis. Elastic coefficient $E_z = 56$ GPa obtained from line fit of elastic regime at strain rate $s = 0.1 s^{-1}$. In comparison, for pure calcite we obtain $E_z = 56$ GPa, and for dolomite we obtain $E_z = 66$ GPa.

Figure 5: Graphical representation of the data in Table 1 in the main article. Probability of deformation twinning (T), alternate twinning (A) and shear fracture (F) during applied uniaxial strain along *c*-axis in magnesian calcites. The data were obtained from four independent simulations at each of the six strain rates: $(0.15, 0.2, 0.25, 0.3, 0.4 \text{ and } 1.0) \text{ s}^{-1}$. For the pure cases, calcite, magnesite and dolomite, data were obtained from one trajectory for each strain rate. Values at 50 % Mg concentration to the right corresponds to dolomite.

Strain Rate		0.	15		0.2				0.25				0.3					0.	4		1					
0:6			Г		Т				Т			Т				Т				Т						
1:5	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т		
2:4	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	А	Т	Т		
3:3	Т	Т	Т	Т	Т	Т	Т	Т	А	Т	Т	Т	F	Т	Т	Т	А	Т	Т	Т	Т	Т	Т	Т		
4:2	Т	F	F	F	Т	Т	F	Т	F	F	Т	F	F	F	Т	Т	F	Т	F	Т	F	Т	Т	Т		
5:1	Т	F	F	F	Т	F	F	F	Т	F	F	F	Т	F	F	F	F	F	F	F	Т	F	F	F		
6:0]	F		F				F				F				F				F					
dolomite	F						F				F				F				F				F			

Figure 6: Summary of observed deformation twinning (T) and (A) and shear fracture (F) distribution for uniaxial stress along the *c*-axis. Results obtained from independent simulations at each of the six strain rates: $(0.15, 0.2, 0.25, 0.3, 0.4 \text{ and } 1.0) \text{ s}^{-1}$.

Figure 7: Mg^{2+} clusters in different colors from Voronoi tessellation at 1:5 Mg:Ca ratio. Largest cluster shown as surface. Ca^{2+} are shown as points. Magnesium ions belonging to the same cluster are represented in the same color.

Figure 8: Mg^{2+} percolating cluster from Voronoi tessellation at 2:4 Mg:Ca ratio. Cluster shown as surface. Ca^{2+} are shown as points.

Figure 9: Mg^{2+} percolating cluster from Voronoi tessellation in dolomite. Cluster shown as surface. Ca^{2+} are shown as points.

Figure 10: Radial distribution function of Ca^{2+} and Mg^{2+} ions in the initial i, and final f configuration of T and A type deformation. A_i and T_i are the same structure.

Figure 11: Radial distribution function of Ca^{2+} ion pairs and Mg^{2+} ion pairs in the initial *i*, and final *f* configuration of T (left) and A (right) type deformation.

Figure 12: Volume of the simulation cell as a function of time for A and T type deformations for four different simulations: 2, 3, 4 and 5. Simulations were performed at 3:3 Mg:Ca ratio of randomly incorporated Mg^{2+} .

Figure 13: Deformation response at 1:5 Mg:Ca ratio for 4 random configurations (config) 1,2,3 and 4.

Figure 14: Deformation response at 2:4 Mg:Ca ratio for 4 random configurations (config) 1,2,3 and 4.

Figure 15: Histogram of distribution of 200 potential energies of configurations randomly generated at 1:5, 2:4, 3:3, 4:2 and 5:1 Mg:Ca ratios. Standard deviations of the generated energies were of the order $\sigma_E/\langle E \rangle = 0.01$. Points show potential energies of 4 selected configurations discussed in the results in the main paper. "dol" (yellow point) is for dolomite.

Figure 16: Stress vs. strain curve for two different periodic supercells of $5 \times 5 \times 2$ and $7 \times 5 \times 2$ unit cells for dolomite. Elastic coefficients E_z obtained from line fit in the elastic regime at strain rate $s = 0.2 s^{-1}$.

Figure 17: Stress vs. strain curve for two different periodic supercells of $5 \times 5 \times 2$ and $7 \times 4 \times 2$ unit cells for magnesian calcite at 3:3 Mg:Ca ratio. Elastic coefficients E_z obtained from line fit in the elastic regime at strain rate $s = 0.2 s^{-1}$.