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1. The derivation of the infinitesimal covariance

1.1. The infinitesimal mean
The expression for the infinitesimal mean (and also the infinitesimal variance) can be 
easily obtained by comparing equations 1 and 3 with equation 5 in the manuscript. 
However, the stochastic derivation will be presented here for completeness. 

Let rij be the distance separating the two diffusing particles i and j at time t. rij 
is the length of the three-dimensional vector rij given as

rij t  X ij t ,Yij t , Zij t   (1)
where Xij, Yij and Zij are independent unbounded unbiased Brownian motions with 
specified diffusion coefficients along the x, y and z axes respectively and

U ij t U j t U i t  (2)
where Uij is Xij, Yij or Zij. Since they are Brownian motions, their infinitesimal mean 
and variance are given as follows (see, for example, references 1518 for more 
details)

Uij  lim
 t0

1
 t
E U ij t  U ij t 



  0        (3)

Uij
2  lim

 t0

1
 t
E U ij t 

2 U ij t 




 2 Di  D j  2Dij       (4)

where Di and Dj are the diffusion coefficients of the particles i and j respectively, Dij 
is the relative diffusion coefficient of the particles i and j, t is an infinitesimal time 
increment and

U ij t U ij t  t U ij t  (5).
The vector r changes infinitesimally during the time increment t and becomes r+r 
where

rij t   X ij t ,Yij t ,Zij t   (6).
Hence, the desired expression for the infinitesimal mean µ is

 rij  t  E  rij rij



  E rij rij  rij rij



 (7)

and then

 rij  t  rij E 1
2rij .rij
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


(8)

where the following property of the conditional expectation was used
E rij rij



  rij (9).

Expanding the square root as a series gives
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(10)

where the indicator of conditional expectation (| rij) has been removed for 
convenience and O is a polynomial function of leading order (rij)3. The terms 
containing rij of order 3 and higher have zero expectation and so do the first-order 
terms. Hence

 rij  t 
rij
2
E

rij .rij
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 (11).

Finally,

 rij  t 
rij
2

3 2Dij t
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(12).

And therefore,

 rij 
2Dij
rij

    (13).

1.2. The infinitesimal variance
The derivation for the infinitesimal variance proceeds similarly and will be briefly 
presented here. The infinitesimal variance is

 2 rij  t  E  rij 2 rij




 E rij rij  rij 2 rij





(14).

As before, expanding the square root as a power series
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where the indicator (| rij) was dropped for convenience, and so

 2 rij  t  rij2E
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Because the terms of order 3 and higher (as before) have expectation zero, it follows 
that

 2 rij  t  rij2E
rij .rij
rij

2











2











    (17).

Finally,
 2 rij  2Dij (18).



1.3. The infinitesimal covariance
Deriving the expression for the infinitesimal covariance of two distances rij and rjl 
proceeds in the same way and again the same notations used above will be used here. 
Starting with the following definition for the covariance

 2 rij , rjl  t  E rij rij  rij  r jl r jl  rjl  


rij , rjl  (19).

The conditional expectation indicator (| rij, rjl) is ignored from this point on for 
convenience, and so
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If keeping only the terms that have non-zero expectation

 2 rij , rjl  t  rij rjlE
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(21).

Evaluating the last expression and realizing that the only terms that will contribute to 
the expectation are the terms containing (Uj)2 where Uj is Xj, Yj or Zj gives

 2 rij , rjl  t  rij . r jl
rij rjl

2D j t (22),

or

 2 rij , rjk  2D j cos rij , r jl 


(23).

2. Bessel bridge (RF simulations)
Because of the non-zero time-step in the RF simulations, it is essential to take into 
account the possibility that an encounter between two particles may occur during the 
course of a time step, but that by the sample time the pair may have diffused apart 
again. This phenomenon leads to a systematic underestimate of reaction probability in 
the simulation.  A correction may be made using what is called a bridging process. 
Briefly, consider one-dimensional Brownian motion moving from a separation of x to 
a separation of y during time t, and passing through a separation of a (the reaction 
distance of the two particles here) in between. The probability of passing through a, 
conditional on starting at x and ending at y, is given as follows (see references 
9,1518 in the manuscript for more details) 

Pr 1
pa x, y, t 
p x, y, t  (24)

where pa(x,y,t) is the probability density of an absorbed motion (a motion that is 
killed when it first hits a separation of a) and p(x,y,t) is the probability density of 
reaching the separation y starting from x during t in an unbounded diffusion. Both 
functions are known for a three-dimensional Bessel process, which is the random 
distance between two diffusing particles, and are given as follows (see references 9, 
1518 in the manuscript)



p x, y, t  y
x 4 D  t

e yx 2 4 D  t  e yx 2 4 D  t







 (25)

pa x, y, t  y
x 4 D  t

e yx 2 4 D  t  e yx2a 2 4 D  t







 (26).

where D is the relative diffusion coefficient. Equation (24) then gives the following 
bridging condition for a Bessel process 

Pr  e
 xa  ya  D  t  e xy D  t

1 e xy D  t
(27)

which can be used to calculate the probability that a reaction takes place during the 
time step t in the course of Monte Carlo RF simulations, properly conditioned on the 
initial and final separations.

3. The IRT method 
The IRT method to simulate radiation chemical kinetics is based on the 
approximation of independent pairs, and was first proposed in 1982 (see references 
14, 914, 2325, 26, 27 in the manuscript for more details). Since the only 
necessary parameters to obtain the chemical kinetics are the reaction times, the IRT 
method is built to generate the reaction times without having to monitor the 
trajectories of the reactants, as done in the RF simulations. Briefly, consider a system 
of only two neutral particles i and j separated initially by a distance rij, the probability 
Wij that they have reacted by time t is given by equation 5 in the manuscript where, as 
discussed there, the reaction is assumed to be fully diffusion-controlled. Therefore, 

t  1
4Dij

rij  a
erfc1  










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2

:  
rij
a
Wij (28)

where erfc is the inverse of the complementary error function. This is very 
important because it indicates that if the initial separation of the two particles rij is 
known, a reaction time for them can be generated if Wij in the last equation is replaced 
by a uniformly distributed random number between 0 and 1 (provided the function 
erfc can be computed). If the random number is greater that a/rij the encounter time 
is deemed to be infinite, i.e. that pair never encounters.  This method is known as the 
inverse function method for generating non-uniform random numbers [see reference 
28 in the manuscript]. The IRT method employs the independent pairs approximation 
to obtain the reaction times in systems of more than two particles, i.e. a random 
reaction time for each pair present is generated as described above from its initial 
separation distance, ignoring the presence of any other particles. It is worth noting 
that the reaction times generated are not completely independent. They are generated 
from a set of distances that belong to a realizable particle configuration (e.g. they 
obey triangle inequalities etc.) The reaction times are independent but conditional on 
the initial distances. 

The Monte Carlo IRT simulation generally proceeds as follows: it starts from 
an initial configuration, which in a model track will typically be a random distribution 
of some sort but for the purpose of testing can be of a specific geometry. The inter-
particle separations are then used to generate random reaction times independently 
using equation (28). Following that, the minimum of the generated times is chosen to 
be the first reaction time. The next minimum time (limited to the surviving particles) 
is then chosen to be the next reaction time and so on. The processes terminate either 



by the reaction of all particles involved or by reaching a maximum time limit used to 
stop the process. The process is repeated a large number of times (realizations) so that 
the data become statistically representative and this leads to the reaction rate (or 
similarly the survival probability).


