
S1

Supplementary Information for

Negative Poisson's ratio in graphene-based carbon foams

Jin Zhang1*, Qilin Xiong2,3*

1 Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
2 Department of Mechanics, Huazhong University of Science & Technology, 1037 Luoyu Road, 

Wuhan 430074, China
3 Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, 1037 Luoyu 

Road, Wuhan 430074, China
*Corresponding authors. J.Z. and Q.X. contributed equally to this work.

E-mail address: jinzhang@hit.edu.cn (J. Zhang); xiongql@hust.edu.cn (Q. Xiong).

1. Supplementary video

Movie 1: Structures of CFs when they are compressed in the x direction. 

Movie 2: Structures of CFs when they are compressed in the y direction.
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2. Supplementary figure
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Fig. S1. Internal energy evolution for CFs during the initial structural relaxation process
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Fig. S2. Stress-strain response of CFs subjected to the uniaxial compression, respectively, with a 

strain rate of 0.005 ns-1 and 0.01 ns-1. Here the cell length is 1.3 nm
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Fig. S3. The transverse strain versus the applied axial strain when CFs are uniaxially compressed 

within 1 K and 300 K. Here the cell length is 1.3 nm
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3. Continuum models of CFs

3.1 Density

The density  of the unit cell of CFs shown in Fig. S4 can be defined as

,                                                           (S1)M
S

 

where M and S are the mass and area of the unit cell, respectively. 

Fig. S4. A unit cell of CFs

Considering the fact that each component graphene sheet in CFs is shared by two 

neighbouring unit cells, the mass of each unit cell is thus

,                                                            (S2)3
2
PdM 

where P is the areal mass density of graphene and d is the length of the component graphene 

element, i.e., the cell length.

Meanwhile, the area of the unit cell shown in Fig. S4 can be expressed as

,                                                        (S3) 23 2
4

S d l 

where l is the side length of the hexagon carbon ring in CFs. Substituting Eqs. S2 and S3 in Eq. 

S1 we obtain the density of CFs as

,                                                      (S4)2

12 3
(1 2 / )

P
d l d

 


d

l
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Usually, l is significantly smaller than d. Under this circumstance, the density of CFs can 

be approximately expressed as

.                                                         (S5)2 3 P
d

 

3.2 Stress distribution

We consider two different cases, where CFs are compressed along x and y directions as 

shown in Fig. S5. The stresses induced in the cell walls are shown as T1 and T2 in Fig. S5. Since 

the two different compressive loading cases induce different stresses within the cell walls, we 

will analyse these two cases individually.

Fig. S5. CFs under two cases of compressive loading

Considering the fact that the deformation of the hexagon carbon ring in CFs is extremely 

small, it thus can be ideally assumed as a rigid body. Under this circumstance, when a 

compressive stress x is applied along the x direction, i.e., case 1 shown in Fig. S5, the 

equilibrium equations can be written as

,                             (S6.1)2 12 cos( /3) ( 2 )sin( /3)xT T d l    

.                                             (S6.2)12 sin( /3) 0T  

T1

T2 xx
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From Eq. S6 we see that when CFs are compressed along the x direction, the stresses in their 

component graphene sheets can be expressed as

,  .                                  (S7) 1 0T  2
3 2 31

2 2x x
lT d d

d
     

 

When a compressive stress y is applied along the y direction, i.e., case 2 shown in Fig. 

S5, the equilibrium equations can be written as

,                                                   (S8.1)2 1 cos( /3) 0T T  

.                                            (S8.2)12 sin( /3) ( 2 )yT d l  

From the above equation we see that when CFs are compressed along the y direction, the stresses 

in their component graphene sheets can be expressed as

,  .         (S9)1
1 2 11
3 3y y

lT d d
d

     
 

2
1 2 11

2 3 2 3y y
lT d d

d
      

 

3.3 Young’s modulus and Poisson's ratio of CFs prior to buckling

Here we will consider a unit cell of CFs as shown in Fig. S6, where the initial length of 

the inclined and horizontal cell walls is d1 and d2, respectively. Considering the fact that the side 

length of the hexagon carbon ring in CFs is l, two sides of unit cell shown in Fig. S6 can be thus 

expressed as L1 = d1+2l, while the base length is L2 = d2+2l. If the cell walls of the unit cell 

deform by small amounts of d1 and d2, the inclined cell walls then have length d1+d1, and the 

length of the horizontal cell walls becomes d2+d2. As a result, the length of the sides of the 

deformed unit cell shown in Fig. S6 becomes L1+d1, while the base length becomes L2+d2. 

Meanwhile, the height of the unit cell becomes h+h after the deformation. By using Pythagoras’ 

theorem we obtain:
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,                                 (S10)   
2

2 22 2
1 12

L d h h L d         
 

Ignoring terms of second order for small extensions in Eq. S10, and using the results L1 = 

L2/[2cos(/3)] and h = L2tan(/3)/2 we get:

.                                              (S11)1 2

1 2

4 1
3 3

d dh
h L L

    
    

   

The quantities d1/L1 and d2/L2 in Eq. S11 are simply the strains of the cell walls under 

stress T1 and T2 (see Fig. S5) given by T1/Y and T2/Y, respectively, where Y is the tensile rigidity 

of component graphene.

Fig. S6. Deformed unit cell of CFs for calculating Young’s modulus and Poisson's ratio

When CFs are compressed along the x direction, i.e., T1 = 0 and T2 = xd(1+2l/d)/2, 3

the strains in x and y directions are, respectively, 

,                                             (S12.a)2

2

3
2

x
x

dd
L Y

 
 

.                             (S12.b)2

2
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From Eq. S12 the Young modulus Ex and Poisson's ratio xy of CFs in the x direction can be 

expressed as

ll d2

l

d1

l

h
d1+d1

l

l

d2+d2l l

h+h

x
y



S9
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When CFs are compressed along the y direction, i.e., T1 = yd(1+2l/d)/  and T2 = 3 3

xd(1+2l/d)/(2 ), the strains in x and y directions are, respectively,3

,                                                (S14.a)2

2

1
2 3
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From Eq. S14 the Young modulus Ey and Poisson's ratio yx of CFs in the y direction can be 

expressed as

,  .                                      (S15)2
3
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3.4 Geometrical predictions of Poisson's ratio of CFs after buckling

When a unit cell of CFs shown in Fig. S7 is compressed along the y direction with a 

strain of 100%, according to our MD observations the midpoints in the inclined cell walls 

become in contact with midpoints of the horizontal cell walls. Therefore, when a compressive 

strain of 100% is applied the central hexagon ring rotates 60o in the plane. Thus, based on the 

geometrical estimation technique [S1], the horizontal cell walls initially with length d will bend 

such that their final length in horizontal direction becomes 0.8d (see Fig. S7). Under this 

circumstance, the transverse strain  can be expressed asx

.                                 (S16)0.8(3 ) 3 (3 6 ) 1 5 /0.2
3 6 1 2 /x

d a d a l d
d a l d

           

Thus, the Poisson's ratio yx can be calculated as
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Fig. S7. The schematic of undeformed unit cell of CFs and predicted configuration of deformed 

unit cell at 100% compressive strain

4. FE simulations for the buckling analysis of foam structures

In the FE calculations we considered a foam structure structurally analogous to the CFs 

considered in our study. Here, the ratio between the cell wall length d and the side length l of the 

hexagon ring is set as 5. In Fig. S8 we show the FE model of the foam structure, where BEAM3 

element was selected to describe the elastic cell wall of the foam structure. The buckling analysis 

was performed by initially applying a reference level of force to the foam structure. Then, a 

standard linear static analysis was carried out for the foam structure to obtain its geometric 

stiffness matrix. Thus, the lowest eigenvalue and the corresponding buckling mode of the foam 

d

l

d/2

x
y

0.4d l 0.8d



Deformation with a strain 
of 100% in the y direction
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structure can be obtained by using the block Lanczos algorithm in the commercial code ANSYS. 

The readers can refer to Re. [S2] for more details. 

         

Fig. S8. The FE model of a foam structure
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