Supplementary Materials

Catalytic Effect of a Single Water Molecule on the OH + CH₂NH Reaction

^aMohamad Akbar Ali^{*}, ^bM. Balaganesh, ^bK. C. Lin

^aDepartment of Chemistry, Sejong University, Seoul, 143-747, Republic of Korea

^bDepartment of Chemistry, National Taiwan University, Taiwan

Corresponding Author Email: <u>akbar256@sejong.ac.kr</u>

Table of Contents

Table S1. Optimized geometries of reactants, complexes, transition states and products obta using BHandHLYP/aug-cc-pVTZ level	iined
Table S2: Electronic energies, Zero-point energies (ZPE), and zero-point corrected energ two-body complexes, three body complexes and transition states computed using at (Z//B&H/ a-Z	ties of CC/a- ge 7
Table S3: BSSE corrected energies of two-body complexes, three body complexes computed using at CC/a-Z//B&H/a-Z	were a ge 8
Table S4. Vibrational frequencies of reactants, complexes, transition states and products obatined using BHandHLYP/aug-cc-pVTZ level	ge 9
Table S5: Rate coeffcients (k_2 in s^{-1})) computed using CVT/SCT and TST/Eckart Pag	e 11
Table 6: BSSE corrected equilibrium constants (cm^3 molecule ⁻¹) and rate coefficients (s^{-1}) P 12	'age
Table S7: Equilibrium constant, concentration of $[H_2O]$ and rate coefficients (cm ³ molecule of the CH ₂ NH + OH \rightarrow Products, CH ₂ NHH ₂ O + OH \rightarrow PRCs \rightarrow Products and CH ₂ NH + H ₂ OOH \rightarrow PRCs \rightarrow Products computed using TST/Eckart and BSSE corrected CVT/SCT of error analyis	r ⁻¹ s ⁻¹) and 14
Figure S1: Minimum energy pathways of TS1 to TS8 obtained from CVT/SCT/ISPE methodologies using B&H/a-Z and CC/a-Z//B&H/a-Z levels and CC/a-Z//B&H/a-Z levels + BSSE correction	re 15
Figure S2: Transition state of backward reaction of PRCsPage	e 19

Table S1. Optimized geometries of reactants, complexes, transition states and products obtained using BHandHLYP/aug-cc-pVTZ level.

CH₂NH

С	0.00000000	0.00000000	0.00000000
Н	0.00000000	0.00000000	1.08477011
Н	0.96762571	0.00000000	-0.48169887
Ν	-1.03324157	0.00000000	-0.70674090
Н	-1.87115562	0.00000000	-0.14360145
ОН			

on			
0	0.00000000	0.00000000	0.10694300
Н	0.00000000	0.00000000	-0.85554200

H₂O

Н	0.00000000	0.75771600	-0.45886800
0	0.00000000	0.00000000	0.11471700
Н	0.00000000	-0.75771600	-0.45886800

$CH_2NH\cdots H_2O(RC-1)$

С	-1.44441400	-0.49052200	0.01977300
Н	-2.52257800	-0.58072200	-0.03388200
Н	-0.87661000	-1.40653900	0.08994900
Ν	-0.83206000	0.60212900	0.00297300
Н	-1.45291400	1.39354500	-0.06787000
0	1.96449500	-0.15460000	-0.08154500
Н	2.51872600	0.27875900	0.55547600
Н	1.10831900	0.27998400	-0.03076100

CH₂NH…H₂O-1 (RC-2)

С	-1.71160200	0.39222500	-0.00001300
Н	-1.28293200	1.38970700	-0.00002200
Н	-2.79172700	0.33213000	-0.00002100
Ν	-1.03384500	-0.65973000	0.00000600
Н	-0.04348800	-0.45691100	0.00001200
0	2.06148600	0.15401900	0.00000600
Н	2.56639000	-0.11618000	-0.75897200
Н	2.56640100	-0.11613900	0.75899100

CH₂NH…OH (RC-3)

С	-1.55780000	-0.38001200	0.00000700
Н	-2.61415000	-0.14202900	0.00009800
Н	-1.29349000	-1.42707500	-0.00005600
Ν	-0.64817200	0.48062400	-0.00002700
Н	-1.00830800	1.42277200	0.00003900
0	2.19418900	-0.12987200	0.00001100
Н	1.24644300	0.10101200	-0.00002400

H₂O…HO (RC-4)

0	1.60976500	0.00000000	0.01043000
Н	0.64116500	-0.00000300	-0.02712100
0	-1.24838900	-0.00000100	-0.05224600
Н	-1.76609300	-0.76252000	0.18082800
Н	-1.76608200	0.76252700	0.18082600

CH₂NH···H₂O···OH (PRC-1)

С	-1.60784300	-0.81117000	-0.00863800
Н	-2.51691700	-1.39897900	-0.03962700
Н	-0.66880900	-1.34480500	-0.01015700
Ν	-1.59825200	0.44315500	0.02609300
Н	-2.52503600	0.83980900	0.02020500
0	1.06349400	1.36155200	-0.09143900
Н	1.29696600	2.06867100	0.49717600
Н	0.10616400	1.22763100	-0.01986500
0	1.86398900	-1.27610700	0.02196600
Н	1.72258800	-0.31095000	-0.02276900

$CH_2NH\cdots H_2O\cdots OH (PRC-2)$

С	0.22247900	1.68946800	0.00002000
Н	-0.71483400	2.23346700	-0.00009800
Н	1.12871000	2.27828700	0.00024000
Ν	0.29412500	0.44002400	-0.00008800
Н	-0.61942000	0.00688000	-0.00028100
0	2.69826700	-1.13958400	0.00003500
Н	1.87912200	-0.60453300	-0.00001600
0	-2.60172000	-0.70628100	-0.00000700
Н	-2.91983900	-1.18172900	0.75962300
Н	-2.91986200	-1.18242000	-0.75919400

$CH_2NH\cdots H_2O\cdots OH (PRC-3)$

Н	-0.65784200	-0.90803600	-0.00804300
Н	-2.98310800	0.77965800	0.01991300
0	1.34328300	1.32289900	-0.08686200
Н	1.55618800	2.02750400	0.51245600
Н	0.39607700	1.14874100	-0.00965000
0	1.77419600	-1.41712700	0.01590100
Н	1.82933500	-0.44408100	-0.01783600
Ν	-1.13036400	-0.01465100	0.01702400
С	-2.37731500	-0.11452300	-0.00151600
Н	-2.90404300	-1.06026900	-0.03922500

$CH_2NH\cdots H_2O\cdots OH (PRC-4)$

С	1.99188100	0.34298100	-0.00003900
Н	3.04290200	0.59769200	0.00030000
Н	1.29300800	1.17324200	-0.00043100
Ν	1.65445100	-0.86331100	0.00004000
0	-1.70756800	-1.06366700	-0.00001100
Н	-2.01079100	-1.54426600	0.76295000
Н	-2.01129700	-1.54423600	-0.76279100
0	-1.17190900	1.74455000	0.00003600
Н	-1.46013400	0.81936700	0.00002700
Н	0.64968000	-0.96356800	-0.00030200

CH₂NH···H₂O···OH (PRC-5)

С	-1.46309300	-0.94331300	-0.03047200
Н	-2.23915800	-1.69797500	-0.06768800
Н	-0.43665800	-1.27825000	-0.06338500
Ν	-1.70194600	0.28611000	0.04819000
Н	-2.68815900	0.49330300	0.07196800
0	0.74260900	1.66279600	-0.02061400
Н	-0.19394000	1.37648300	0.03515600
0	1.97166100	-0.92696600	-0.06331700
Н	2.56482700	-1.15021300	0.64453200
Н	1.97111000	0.02712400	-0.10363100

$CH_2NH\cdots H_2O\cdots OH$ (PRC-6)

С	1.50605300	-0.88871200	-0.00105300
Н	2.37383800	-1.53664600	-0.00040800
Н	0.53153800	-1.35331800	-0.00312600
Ν	1.58670600	0.36422800	0.00048100
Н	2.53812700	0.69707200	0.00237000
0	-0.88410300	1.67096900	-0.00059000
Н	0.03886300	1.32504800	0.00001100
0	-1.77028800	-1.04779900	0.00257800
Н	-1.69169400	-0.09102900	0.00126700
Н	-2.69879800	-1.24380600	-0.01306400

TS1

0	-0.48082400	1.37762500	-0.24385800
Н	0.45531400	1.14309500	-0.16675100
С	-1.27665600	-0.26881600	0.46503200
Н	-2.27899800	0.07591400	0.26946100
Н	-0.91122600	-0.14450200	1.46893500
Ν	-0.63873900	-1.06918300	-0.32269500
Н	-1.11867400	-1.17258000	-1.20390600
0	1.96776700	-0.09448200	0.17461200
Н	2.76624900	-0.29695300	-0.29736000
Н	1.32290500	-0.77294100	-0.04773400

TS2

1.46099800	0.18008100	-0.00105500
2.45409300	0.61822400	-0.04008400
0.55092100	1.05350200	0.02084500
1.14888300	-1.01354100	0.01724700
1.92540000	-1.66017000	-0.00763700
-1.73888100	-0.81737100	-0.09505300
-2.24961000	-1.21893300	0.59761200
-0.84765900	-1.17177400	-0.02378500
-0.45271000	1.73802000	0.01599200
-1.10858600	1.02825800	-0.02886700
	1.46099800 2.45409300 0.55092100 1.14888300 1.92540000 -1.73888100 -2.24961000 -0.84765900 -0.45271000 -1.10858600	1.460998000.180081002.454093000.618224000.550921001.053502001.1488300-1.013541001.92540000-1.66017000-1.73888100-0.81737100-2.24961000-1.21893300-0.84765900-1.17177400-0.452710001.73802000-1.108586001.02825800

TS3

0	0.33024500	1.39027300	-0.10868300
Н	0.69640700	1.36896400	-0.99642200
С	1.16769600	-0.34209100	0.57153800
Н	0.46334600	-0.39874200	1.38773900

Н	2.13552300	0.07694600	0.78832100
Ν	0.99444600	-0.94942300	-0.54935200
Η	0.05958500	-1.33320800	-0.59506100
0	-1.95845500	-0.32044400	0.07489000
Η	-2.86631900	-0.04720000	0.11902100
Η	-1.43016400	0.47310400	-0.01702000

TS4

С	-0.62100800	0.42761000	0.00000000
Н	-0.31372300	1.47172600	-0.00000500
Н	-1.82498900	0.31798100	0.00000000
Ν	0.08542800	-0.57745800	0.00000600
Н	1.08350600	-0.39681000	0.00000500
0	-3.10302500	0.04658800	-0.00000200
Н	-3.02455800	-0.90883100	-0.00000100
0	3.09566900	0.10079300	-0.00000300
Н	3.63332800	-0.09330900	-0.75987400
Н	3.63333200	-0.09326200	0.75987600

TS5

0	-2.89542000	-0.20808400	-0.03108700
Н	-3.01807300	-0.80832500	0.70660000
С	-0.37797400	-0.18206400	-0.12496800
Н	-1.58405300	-0.22702800	-0.13239400
Н	0.12730400	-1.13017600	-0.25767500
Ν	0.22774600	0.88421300	0.01414700
Н	-0.35822800	1.69711900	0.13527200
0	2.85689200	-0.40095700	0.08971800
Н	3.62592500	-0.04119500	-0.33493800
Н	2.18896300	0.28482600	0.06487100

TS6

Н	0.35972600	0.46641200	0.36690800
Н	2.61672200	-1.31637800	-0.24332700
0	-2.05393800	-0.65083300	-0.18288800
Н	-2.77811600	-0.94415900	0.35743200
Н	-1.27723700	-1.10833000	0.13365400
0	-0.22295000	1.59633000	0.03115400
Н	-1.07659200	1.20060100	-0.18291800
Ν	0.87043800	-0.53042400	0.35865600
С	1.98551400	-0.43864800	-0.18627000
Н	2.36445700	0.48273300	-0.61084400

TS7

0	2.51462000	-0.60866900	-0.05265100
Н	2.55579300	-0.94883400	0.84342200
С	0.20441800	1.24208900	0.01161600
Н	1.12498800	1.80748900	0.07269100
Н	-0.73324700	1.78025100	0.05883700
Ν	0.17141900	0.00366100	-0.11354100
Н	1.17083400	-0.44737000	-0.19467200
0	-2.71365400	-0.40562400	0.10966000
Н	-3.17247500	-0.97896300	-0.49225700
Н	-1.78006400	-0.57638900	-0.01900000

TS8

С	-1.60872700	-0.04727500	0.00000100
Н	-2.64763200	0.26271100	0.00000500
Н	-0.84215700	0.88384600	0.00000100
Ν	-1.25793900	-1.22973100	-0.00000100
0	1.92392800	-0.59744200	-0.00000100
Н	2.46775600	-0.77079600	-0.76119300
Н	2.46772800	-0.77075300	0.76122200
0	0.12760800	1.78381700	0.00000000
Н	0.85516100	1.15416700	-0.00002600
Н	-0.25520800	-1.35841500	-0.00000400

H₂O

Η	0.00000000	0.75771600	-0.45886800
0	0.00000000	0.00000000	0.11471700
Н	0.00000000	-0.75771600	-0.45886800

cis-CHNH

С	0.10973300	0.62950400	0.00000000
Н	-0.66902500	1.38869200	0.00000000
Ν	0.10973300	-0.57998600	0.00000000
Н	-0.75750600	-1.10581800	0.00000000

trans-CHNH

С	0.00062400	0.63869700	0.00000000
Ν	0.00062400	-0.57829000	0.00000000
Н	-0.88250300	-1.06713500	0.00000000
Н	0.87439400	1.28298000	0.00000000

NHCH₂-OH

С	-0.05045300	0.48608100	0.02855300
Н	-0.12050100	1.06014000	0.96031000
Ν	-1.13623600	-0.41621100	-0.02766300
Н	-1.99626400	0.11907700	-0.01179800
Н	-0.09147100	1.20479800	-0.79030600
0	1.17517000	-0.16708600	-0.05251900
Н	1.06324400	-1.05032800	0.28426600

Table S2: Electronic energies, Zero-point energies (ZPE), and zero-point corrected energies of two-body complexes, three body complexes and transition states computed using at CC/a-Z//B&H/a-Z.

Species	E _e (Hartree)	ZPE(Hartree)	E+ZPE(Hartree)
CH ₂ NH···H ₂ O(RC-1)	-170.8323046	0.066701	-170.7656036
CH ₂ NH···H ₂ O-1(RC-2)	-170.826836	0.065237	-170.761599
CH ₂ NH…OH (RC-3)	-170.1368859	0.053529	-170.0833569
H ₂ O…HO (RC-4)	-151.9969154	0.034091	-151.9628244
CH ₂ NHH ₂ OOH (PRC-1)	-246.4918688	0.079496	-246.4123728
CH ₂ NH···H ₂ O···OH (PRC- 2)	-246.4813978	0.077226	-246.4041718
CH ₂ NH···H ₂ O···OH (PRC- 3)	-246.4894763	0.079173	-246.4103033
CH ₂ NH···H ₂ O···OH (PRC- 4)	-246.4813978	0.077226	-246.4041718
CH ₂ NH…H ₂ O…OH (TS1)	-246.48478	0.080270	-246.40451
CH ₂ NH···H ₂ O···OH (TS2)	-246.4783359	0.073481	-246.4048549
CH ₂ NH…H ₂ O…OH (TS3)	-246.481461	0.079249	-246.402212
CH ₂ NH···H ₂ O···OH (TS4)	-246.4694045	0.070829	-246.3985755
CH ₂ NH…H ₂ O…OH (TS5)	-246.4751072	0.072062	-246.4030452
СH ₂ NHH ₂ OOH (TS6)	-246.4802734	0.072635	-246.4076384
CH ₂ NH…H ₂ O…OH (TS7)	-246.4778823	0.072261	-246.4056213
CH ₂ NH···H ₂ O···OH (TS8)	-246.4768595	0.072689	-246.4041705

Table S3: BSSE corrected energies of two-body complexes, three body complexes were computed using at CC/a-Z//B&H/a-Z.

Species	BSSE (Hartree)	BSSE (kcal/mol)
CH ₂ NH···H ₂ O (RC-1)	0.002238479	1.40
CH ₂ NH…H ₂ O-1 (RC-2)	0.002033429	1.27
CH ₂ NH···HO (RC-3)	0.002092781	1.30
H ₂ O…HO (RC-4)	0.002199618	1.38
$CH_2NH\cdots H_2O\cdots OH (PRC-1)$	0.003542650	2.20
$CH_2NH\cdots H_2O\cdots OH (PRC-2)$	0.004239076	2.66
$CH_2NH\cdots H_2O\cdots OH (PRC-3)$	0.003287296	2.06
$CH_2NH\cdots H_2O\cdots OH (PRC-4)$	0.002232818	1.40

Table S4. Vibrational frequencies of reactants, complexes, transition states and products obatined using BHandHLYP/aug-cc-pVTZ level.

CH ₂ NH	OH	H ₂ O	cis-	trans-	CH ₂ NH-
			CHNH	CHNH	ОН
1107.6	3866.8	1674.7	887.0	932.1	153.0
1157.4		3961.3	951.1	1002.1	466.6
1203.9		4064.1	1067.9	1219.2	532.5
1415.3			1915.3	1873.4	928.3
1543.2			3079.5	3122.9	1006.4
1789.4			3463.1	3568.7	1145.6
3120.7					1212.4
3214.3					1280.8
3579.0					1385.7
					1479.5
					1517.4
					2989.5
					3068.9
					3554.1
					3969.1

Reactants and Products

Complexes

RC-1	RC-2	RC-3	RC-4	PRC-1	PRC-2	PRC-3	PRC-4	PRC-5	PRC-6
46.8	34.0	68.6	115.3	68.9	20.8	65.5	33.4	59.96	75.03
97.9	54.6	147.0	167.7	76.1	60.2	69.7	48.4	76.17	93.51
158.6	82.3	203.5	193.4	125.7	74.3	129.2	66.1	112.45	103.88
201.5	123.8	583.1	425.1	196.9	84.7	173.3	73.8	130.79	150.09
397.3	171.9	669.4	636.9	202.5	131.7	189.4	93.7	140.44	190.15
660.9	272.2	1122.3	1675.6	223.5	157.0	214.9	181.7	196.94	203.46
1116.2	1137.2	1169.3	3730.0	245.6	192.5	223.1	190.0	240.92	251.79
1171.1	1155.0	1193.3	3959.7	457.7	233.3	430.4	223.3	295.89	391.74
1193.6	1255.5	1429.9	4060.9	529.2	306.9	499.3	295.2	452.29	463.43
1425.7	1445.7	1545.2		710.2	616.2	667.3	436.3	652.53	625.12
1542.5	1542.0	1794.4		853.3	716.8	828.8	629.6	807.41	876.71
1705.4	1677.4	3143.3		1131.6	1152.5	1141.1	1131.6	1133.5	1141.69
1790.5	1789.3	3236.4		1181.6	1167.1	1167.5	1172.1	1181.46	1182.58
3138.5	3111.0	3593.4		1201.0	1252.3	1216.1	1231.2	1206.03	1205.14
3236.5	3200.2	3597.4		1437.7	1465.2	1431.1	1437.4	1438.29	1441.93
3597.1	3568.9			1551.6	1544.0	1546.1	1546.7	1554.68	1555.35
3765.4	3957.0			1709.0	1680.1	1696.0	1678.2	1704.16	1700.82
4034.2	4057.6			1785.3	1796.1	1800.1	1787.4	1785.24	1783.74
				3139.5	3133.3	3138.7	3115.2	3137.77	3140.64
				3243.8	3223.4	3229.1	3207.6	3244.1	3252.31
				3567.3	3535.6	3570.1	3582.7	3487.72	3395.45

		3599.0	3565.3	3607.6	3734.2	3600.05	3601.1
		3626.8	3956.2	3686.0	3952.2	3907.13	3805.56
		4031.0	4055.5	4033.0	4050.6	4035.4	4037.49

Transtion states

TS1	TS2	TS3	TS4	TS5	TS6	TS7	TS8
93.3	105.8	90.1	36.3	37.4	38.7	30.4	67.0
153.9	170.6	112.4	39.6	51.0	98.5	61.3	90.1
180.5	179.3	119.4	68.4	89.6	150.1	104.5	127.1
206.8	201.8	178.5	108.6	91.3	165.1	132.2	144.4
301.2	249.1	273.9	137.5	123.7	192.4	171.8	208.4
413.8	311.1	343.1	159.0	205.7	273.0	198.6	211.0
526.2	390.1	378.8	192.2	338.8	407.5	338.1	263.8
574.4	581.9	542.1	205.9	388.8	461.3	400.3	363.3
684.6	602.9	599.9	413.4	537.8	508.2	541.5	540.4
1008.0	666.7	807.4	661.4	671.0	699.5	759.6	686.2
1088.8	956.7	1103.7	842.0	861.7	896.6	831.2	891.1
1108.8	1027.1	1118.7	1102.0	1059.7	1141.9	1156.4	1103.7
1125.4	1091.9	1137.4	1110.4	1103.5	1178.3	1188.3	1132.8
1419.3	1113.3	1424.6	1119.2	1218.2	1214.8	1286.0	1138.8
1440.6	1312.8	1459.5	1306.6	1354.0	1398.1	1400.3	1340.9
1630.3	1564.8	1632.8	1532.4	1431.6	1503.5	1498.0	1534.6
1686.3	1694.4	1682.7	1678.7	1692.5	1682.6	1691.8	1678.2
3188.1	1824.2	3173.1	1845.7	1813.9	1791.8	1788.8	1827.2
3285.8	3127.2	3271.7	3098.2	3188.2	3131.3	3139.8	3158.9
3596.3	3556.8	3569.6	3511.6	3589.6	3214.7	3229.3	3566.9
3716.5	3719.9	3845.6	3907.7	3842.5	3797.2	3836.7	3832.0
3772.0	3776.9	3880.1	3957.0	3903.7	3899.9	3899.9	3950.9
4033.7	4029.1	4041.3	4056.9	4037.5	4038.0	4034.5	4049.0

<i>TS1</i>	TS2	TS3	TS4	TS5	TS6	TS 7	TS8
1.64E+06	1.40E+09	1.22E+06	3.75E+09	1.04E+11	3.99E+08	1.26E+06	1.67E+11
5.59E+06	1.54E+09	3.27E+06	4.18E+09	1.23E+11	9.22E+08	3.18E+06	1.64E+11
1.50E+07	1.71E+09	7.22E+06	4.65E+09	1.42E+11	2.06E+09	8.92E+06	1.63E+11
3.39E+07	1.91E+09	1.38E+07	5.16E+09	1.63E+11	3.61E+09	2.36E+07	1.62E+11
6.69E+07	2.15E+09	2.36E+07	5.72E+09	1.87E+11	6.84E+09	5.62E+07	1.63E+11
1.19E+08	2.43E+09	3.70E+07	6.34E+09	2.12E+11	1.20E+10	1.20E+08	1.63E+11
1.95E+08	2.75E+09	5.43E+07	7.03E+09	2.40E+11	1.96E+10	2.34E+08	1.65E+11
3.00E+08	3.12E+09	7.54E+07	7.79E+09	2.70E+11	3.03E+10	4.20E+08	1.66E+11
4.36E+08	3.55E+09	1.00E+08	8.65E+09	3.03E+11	4.46E+10	7.07E+08	1.69E+11

Table S5-a: Rate coeffcients (k_2 in s⁻¹)) computed using CVT/SCT method.

Table S5-b: Rate coeffcients (k_2 in s⁻¹)) computed using TST/Eckart method.

<i>TS1</i>	TS2	TS3	TS4	TS5	TS6	TS7	TS8
4.38E+06	3.55E+09	2.60E+06	7.03E+07	2.10E+08	4.55E+11	1.20E+10	7.22E+10
1.49E+07	4.47E+09	6.50E+06	1.28E+08	8.26E+08	5.35E+11	3.01E+10	7.01E+10
4.00E+07	5.59E+09	1.35E+07	2.28E+08	2.51E+09	6.19E+11	6.39E+10	6.84E+10
9.00E+07	6.94E+09	2.44E+07	3.96E+08	6.34E+09	7.05E+11	1.20E+11	6.71E+10
1.77E+08	8.56E+09	3.98E+07	6.67E+08	1.39E+10	7.94E+11	2.06E+11	6.61E+10
3.15E+08	1.05E+10	6.02E+07	1.09E+09	2.71E+10	8.86E+11	3.27E+11	6.53E+10
5.17E+08	1.27E+10	8.57E+07	1.70E+09	4.85E+10	9.81E+11	4.90E+11	6.48E+10
7.94E+08	1.52E+10	1.16E+08	2.59E+09	8.08E+10	1.08E+12	7.00E+11	6.44E+10
1.16E+09	1.81E+10	1.52E+08	3.81E+09	1.27E+11	1.18E+12	9.61E+11	6.43E+10

Table 6a: BSSE corrected calculated equilibrium constants (cm³ molecule⁻¹) for the formation of two-body complex.

Temp	$K_{eq(1)}$	$K_{eq(4)}$
	$(CH_2NH+$	(H ₂ O+HO
	$H_2O \rightarrow$	\rightarrow RC-4)
	RC-1)	
200	2.33E-21	4.07E-21
225	9.05E-22	1.85E-21
250	4.33E-22	9.92E-22
275	2.40E-22	6.02E-22
300	1.44E-22	4.01E-22
325	1.01E-22	2.86E-22
350	7.34E-23	2.17E-22
375	5.61E-23	1.71E-22
400	4.48E-23	1.40E-22

Table 6b: BSSE corrected calculated equilibrium constants (cm³ molecule⁻¹) for the formation of three-body complex.

T (K)	$K_{eq(a)}$	K _{eq(b)}	$K_{eq(c)}$	$K_{eq(d)}$	$K_{eq(e)}$	$K_{eq(f)}$	K _{eq(g)}	$K_{eq(h)}$
	(OH +	(OH +	(OH +	(OH +	(OH +	(CH ₂ NH	(CH ₂ NH	(CH ₂ NH+
	RC-1	RC-1	RC-2	RC-1	RC-1	+ RC-4	+ RC-4	RC-4
	→PRC-	→PRC-	\rightarrow PRC-2)	\rightarrow PRC-3)	\rightarrow PRC-4)	→PRC-	\rightarrow PRC-3	\rightarrow PRC-4)
	1)	2)				1)		
200	3.61E-20	8.03E-22	3.65E-20	4.31E-22	1.54E-23	1.96E-20	2.34E-22	8.83E-24
225	6.58E-21	3.82E-22	7.98E-21	1.36E-22	1.16E-23	3.08E-21	6.39E-23	5.7E-24
250	1.69E-21	2.14E-22	2.38E-21	5.47E-23	9.48E-24	7.09E-22	2.29E-23	4.13E-24
275	5.60E-22	1.36E-22	8.89E-22	2.61E-23	8.16E-24	2.16E-22	1.00E-23	3.26E-24
300	2.24E-22	9.38E-23	3.94E-22	1.42E-23	7.31E-24	8.07E-23	5.1E-24	2.73E-24
325	1.04E-22	6.95E-23	1.99E-22	8.49E-24	6.75E-24	3.55E-23	2.91E-24	2.38E-24
350	5.40E-23	5.43E-23	1.12E-22	5.52E-24	6.38E-24	1.78E-23	1.81E-24	2.13E-24
375	3.08E-23	4.42E-23	6.84E-23	3.83E-24	6.15E-24	9.81E-24	1.22E-24	2.01E-24
400	1.89E-23	3.72E-23	4.47E-23	2.79E-24	6.00E-24	5.88E-24	8.68E-25	1.91E-24

TS1	TS2	TS3	TS4	TS5	TS6	TS7	TS8
6.97E+05	1.56E+09	8.74E+05	6.77E+09	1.78E+11	4.59E+08	1.66E+06	6.97E+11
2.37E+06	1.71E+09	1.88E+06	7.47E+09	2.07E+11	9.85E+08	3.69E+06	5.93E+11
6.93E+06	1.89E+09	3.87E+06	8.23E+09	2.39E+11	1.80E+09	9.62E+06	5.22E+11
1.74E+07	2.12E+09	7.42E+06	9.06E+09	2.74E+11	3.65E+09	1.48E+08	4.72E+11
3.80E+07	2.38E+09	1.32E+07	9.98E+09	3.11E+11	6.86E+09	3.36E+08	4.35E+11
7.44E+07	2.70E+09	2.20E+07	1.10E+10	3.52E+11	1.20E+10	6.93E+08	4.07E+11
1.33E+08	3.06E+09	3.46E+07	1.21E+10	3.96E+11	1.95E+10	1.31E+09	3.86E+11
2.21E+08	3.49E+09	5.17E+07	1.34E+10	4.44E+11	3.01E+10	2.31E+09	3.70E+11
3.45E+08	3.97E+09	7.40E+07	1.48E+10	4.96E+11	4.43E+10	3.81E+09	3.58E+11

Table S6-c: BSSE corrected rate coeffcients (k_2 in s⁻¹)) computed using CVT/SCT method.

Table S7a: Equilibrium constant (cm³ molecule⁻¹), H₂O concertation (cm⁻³ molecule) and rate coefficients (cm³ molecule⁻¹ s⁻¹) of the CH₂NH + OH \rightarrow Products, CH₂NH…H₂O + OH \rightarrow PRCs \rightarrow Products and CH₂NH + H₂O…OH \rightarrow PRCs \rightarrow Products computed using TST/Eckart method.

Т	$K_{eq(1)}$	K _{eq(4)}	$[H_2O]$	$k^{e\!f\!f}$	k_{i}^{eff}	k^{eff}
(K)	(CH ₂ NH	$({\rm H_{2}O} +$		a		total
	$+ H_2O \rightarrow$	OH→ OH				
	CH ₂ NH	···H ₂ O)				
	···H ₂ O					
200	7.89E-20	1.38E-19	1.09E+14	1.82E-14	1.74E-14	3.56E-14
225	2.07E-20	4.23E-20	2.04E+15	2.27E-14	2.17E-14	4.45E-14
250	7.24E-21	1.66E-20	2.12E+16	3.05E-14	2.91E-14	5.96E-14
275	3.11E-21	7.80E-21	1.44E+17	4.23E-14	4.03E-14	8.27E-14
300	1.56E-21	4.19E-21	7.10E+17	5.99E-14	5.69E-14	1.17E-13
325	8.85E-22	2.50E-21	2.74E+18	8.60E-14	8.12E-14	1.67E-13
350	5.49E-22	1.62E-21	8.72E+18	1.23E-13	1.16E-13	2.40E-13
375	3.67E-22	1.12E-21	2.38E+19	1.77E-13	1.66E-13	3.44E-13
400	2.61E-22	8.19E-22	5.72E+19	2.53E-13	2.37E-13	4.91E-13

Table S7b: BSSE corrected equilibrium constant (cm³ molecule⁻¹), and rate coefficients (cm³ molecule⁻¹ s⁻¹) of the CH₂NH + OH \rightarrow Products, CH₂NH --H₂O + OH \rightarrow PRCs \rightarrow Products and CH₂NH + H₂O--OH \rightarrow PRCs \rightarrow Products computed using CVT/SCT method.

T(K)	K _{eq(1)}	K _{eq(4)}	$k_a^{e\!f\!f}$	$k_{b}^{e\!f\!f}$	$k_{total}^{e\!f\!f}$
	$(CH_2NH +$	$(H_2O +$	u	0	10101
	$H_2O \rightarrow$	OH→ OH			
	CH ₂ NH	···H ₂ O)			
	···H ₂ O				
200	2.329E-21	4.074E-21	9.96E-17	2.38E-17	1.23E-16
225	9.05E-22	1.849E-21	1.96E-16	5.14E-17	2.47E-16
250	4.325E-22	9.918E-22	3.75E-16	1.09E-16	4.85E-16
275	2.402E-22	6.018E-22	7.03E-16	2.27E-16	9.31E-16
300	1.494E-22	4.006E-22	1.29E-15	4.59E-16	1.75E-15
325	1.012E-22	2.865E-22	2.31E-15	8.89E-16	3.21E-15
350	7.339E-23	2.167E-22	4.03E-15	1.67E-15	5.72E-15
375	5.613E-23	1.715E-22	6.85E-15	3.00E-15	9.90E-15
400	4.483E-23	1.407E-22	1.13E-14	5.23E-15	1.66E-14

Error and Uncertainties

The computed thermochemistry using CC/a-Z//B&H/a-Z level is not greater than \sim 2 kcal/mol and is probably of the order of 1 kcal/mol, which results in a factor of \sim 5 uncertainty in the predicted total rate constants at 300 K. Previous studies on reaction systems analogous to the present work report similar accuracy.^{7,8}

Figure S1-a: Minimum energy pathway (TS1) obtained from CVT/SCT and CVT/SCT/ISPE methodologies using B&H/a-Z, CC/a-Z//B&H/a-Z and CC/a-Z+ BSSE correction //B&H/a-Z.

Figure S1-b: Minimum energy pathway (TS2) obtained from CVT/SCT and CVT/SCT/ISPE methodologies using B&H/a-Z, CC/a-Z//B&H/a-Z and CC/a-Z//B&H/a-Z + BSSE correction.

Figure S1-c: Minimum energy pathway (TS3) obtained from CVT/SCT and CVT/SCT/ISPE methodologies using B&H/a-Z, CC/a-Z//B&H/a-Z and CC/a-Z + BSSE correction //B&H/a-Z.

Figure S1-d: Minimum energy pathway (TS4) obtained from CVT/SCT and CVT/SCT/ISPE methodologies using B&H/a-Z, CC/a-Z//B&H/a-Z and CC/a-Z+ BSSE correction //B&H/a-Z.

Figure S1-e: Minimum energy pathway (TS5) obtained from CVT/SCT and CVT/SCT/ISPE methodologies using B&H/a-Z, CC/a-Z//B&H/a-Z and CC/a-Z + BSSE correction //B&H/a-Z.

Figure S1-f: Minimum energy pathway (TS6) obtained from CVT/SCT and CVT/SCT/ISPE methodologies using B&H/a-Z, CC/a-Z//B&H/a-Z and CC/a-Z + BSSE correction //B&H/a-Z.

Figure S1-g: Minimum energy pathway (TS7) obtained from CVT/SCT and CVT/SCT/ISPE methodologies using B&H/a-Z, CC/a-Z//B&H/a-Z and CC/a-Z+ BSSE correction //B&H/a-Z.

Figure S1-h: Minimum energy pathway (TS8) obtained from CVT/SCT and CVT/SCT/ISPE methodologies using B&H/a-Z, CC/a-Z//B&H/a-Z and CC/a-Z+ BSSE correction //B&H/a-Z.

Initial guess_unoptimized

Final structure_optimized with no imaginary frequency

TS with single imaginary frequecny (25*i*)

С	0.54412200	1.84442400	-0.02006800
Н	-0.24189300	2.59046700	-0.03347900
Н	1.56121200	2.20742700	-0.05793800
Ν	0.32863100	0.61311200	0.03514800
Н	-0.65531600	0.38275500	0.06537900
0	2.20093100	-1.54989500	0.00655600
Н	1.57606000	-0.79672000	0.02561100
0	-2.50067800	-0.63253200	-0.05129200
Η	-3.11485700	-0.79927400	0.65494000
Н	-2.29238000	-1.48356400	-0.42226200

PRC-3

Initial guess_unoptimized

Final structure_optimized with no imaginary frequency

PRC-4

TS with single imaginary frequecny (~40i)

Figure S2: Transition state of backward reaction of PRCs. These structures were optimized using keyword : OPT=TS, CALCFC