Theoretical investigations on the unsymmetrical effect of β -link Zn-porphyrin sensitizers on the performance for dye-sensitized solar cells

Miao Xie^a, Fu-Quan Bai^b, Jinjian Wang^a, Yue-Qing Zheng^{*a}, and Zhenyang Lin^{*b}

a Research Center of Applied Solid State Chemistry, Chemistry Institute for Synthesis and Green Application, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211 People's Republic of China. E-mail: zhengcm@nbu.edu.cn
b Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, People's Republic of China. E-mail.

mail: chzlin@ust.hk

Fig. S1. Absorption spectra of the dye GD2 in DMF solution under different exchange-correlation functional with 6-31G (d) basis set.

Complexes	Orbital	Energy(eV)	Main Component (%)					Assignment	
			Zn-Phy	4-MPH	π-bridge	СООН	BP	-	
							Α		
GD2	LUMO+2	-2.029	52	2	34	12		$\pi^*(\text{Zn-Phy})+\pi^*(\pi\text{-bridge})$	
	LUMO+1	-2.439	95	5	0	0		$\pi^*(\text{Zn-Phy})$	
	LUMO	-2.875	59	3	29	8		$\pi^*(\text{Zn-Phy})+\pi^*(\pi\text{-bridge})$	
	НОМО	-5.457	87	12	1			π (Zn-Phy)	
	HOMO-1	-5.697	92	2	5	1		π (Zn-Phy)	
	HOMO-2	-6.448	46	4	41	9		π (Zn-Phy)+ π (π -bridge)	
	HOMO-3	-6.828	17	83	0	0		π (4-MPH)+ π (Zn-Phy)	
	HOMO-5	-6.919	9	90	1	0		π(4-MPH)	
	HOMO-9	-7.215	11	88	0	0		π (4-MPH)	
	HOMO-12	-7.263	24	75	0	0		π (4-MPH)+ π (Zn-Phy)	
GD2-N1	LUMO+2	-2.059	51	2	34	12	1	$\pi^*(\text{Zn-Phy})+\pi^*(\pi\text{-bridge})$	
	LUMO+1	-2.508	94	3	0	0	2	$\pi^*(\text{Zn-Phy})$	
	LUMO	-2.892	61	3	28	8	1	$\pi^*(\text{Zn-Phy})+\pi^*(\pi\text{-bridge})$	
	НОМО	-5.226	39	3	0	0	57	$\pi(BPA) + \pi(Zn-Phy)$	
	HOMO-1	-5.720	87	2	6	1	4	π (Zn-Phy)	
	HOMO-2	-5.781	58	7	0	0	35	π (Zn-Phy)+ π (BPA)	
	НОМО-3 -6.467		45	5	41	9	0	π (Zn-Phy)+ π (π -bridge)	
	HOMO-4 -6.866		12	87	0	0	0	π(4-MPH)	
	HOMO-8	-7.067	66	15	0	0	19	π (Zn-Phy)+ π (BPA)	

Table S1 Partial molecular orbital compositions (%) of YD2-O-C8 dye in THF solution with different electric field strengths (the abbreviations:the Zn-Phy is Zn-porphyrin, the 4-MPH is 4-methylphenyl group and the BPA is bis(4-methylphenyl)amine group.).

	HOMO-11	-7.230	4	71	0	0	24	π (4-MPH)+ π (BPA)
	HOMO-14	-7.278	28	67	1	0	4	π (4-MPH)+ π (Zn-Phy)
	HOMO-15	-7.371	58	38	2	1	0	π (Zn-Phy)+ π (4-MPH)
GD2-N2	LUMO+2	-2.072	50	2	35	12	1	$\pi^*(\text{Zn-Phy}) + \pi^*(\pi\text{-bridge})$
	LUMO+1	-2.478	95	4	0	0	1	$\pi^*(\text{Zn-Phy})$
	LUMO	-2.904	61	2	27	7	1	$\pi^*(\text{Zn-Phy}) + \pi^*(\pi\text{-bridge})$
	НОМО	-5.227	40	3	0	0	56	$\pi(BPA) + \pi(Zn-Phy)$
	HOMO-1	-5.715	88	2	5	1	4	π (Zn-Phy)
	HOMO-2	-5.787	57	6	0	0	36	π (Zn-Phy)+ π (BPA)
	HOMO-3	-6.464	45	4	42	9	0	π (Zn-Phy)+ π (π -bridge)
	HOMO-5	-6.920	14	83	1	0	1	π(4-MPH)
	HOMO-9	-7.107	11	5	0	0	84	$\pi(BPA)$
	HOMO-11	-7.224	9	89	0	0	1	π (4-MPH)
	HOMO-14	-7.250	20	75	0	0	4	π (4-MPH)+ π (Zn-Phy)
GD2-2N	LUMO+2	-2.102	49	1	36	12	2	$\pi^*(\text{Zn-Phy}) + \pi^*(\pi\text{-bridge})$
	LUMO+1	-2.543	94	2	0	0	3	$\pi^*(\text{Zn-Phy})$
	LUMO	-2.930	63	2	26	7	2	$\pi^*(\text{Zn-Phy}) + \pi^*(\pi\text{-bridge})$
	НОМО	-5.149	37	2	0	0	61	$\pi(BPA)+\pi(Zn-Phy)$
	HOMO-1	-5.476	7	0	0	0	93	$\pi(BPA)$
	HOMO-2	-5.744	89	1	6	1	3	π (Zn-Phy)
	HOMO-3	-5.955	58	5	0	0	36	π (Zn-Phy)+ π (BPA)
	HOMO-4	-6.471	45	4	41	9	1	π (Zn-Phy)+ π (BPA)
	HOMO-5	-6.912	11	83	0	0	5	π(4-MPH)
	HOMO-7	-6.946	19	26	1	0	55	$\pi(BPA) + \pi(4-MPH)$
	HOMO-15	-7.253	15	53	1	0	32	π (4-MPH)+ π (BPA)

Complexes	Main transitions	∆Ecal(eV)	λcal(nm)	f	Character
GD2	HOMO \rightarrow LUMO (86%)	2.0411	607 (612)*	0.1398	π (Zn-Phy) $\rightarrow \pi^*$ (Zn-Phy)+ $\pi^*(\pi$ -bridge)
	$H-1 \rightarrow LUMO (65\%)$	2.1679	571 (571)	0.1210	π (Zn-Phy) $\rightarrow \pi^*$ (Zn-Phy)+ π^* (π -bridge)
	HOMO \rightarrow L+1 (33%)				$\pi(\text{Zn-Phy}) \rightarrow \pi^*(\text{Zn-Phy})$
	HOMO \rightarrow L+1 (47%)	2.6385	469 (444)	1.6580	$\pi(\text{Zn-Phy}) \rightarrow \pi^*(\text{Zn-Phy})$
	$H-1 \rightarrow LUMO (30\%)$				π (Zn-Phy) $\rightarrow \pi^*$ (Zn-Phy)+ π^* (π -bridge)
	HOMO \rightarrow L+2 (43%)	3.1898	388	1.2138	π (Zn-Phy) $\rightarrow \pi^*$ (Zn-Phy)+ π^* (π -bridge)
	H-1→ L+1 (40%)				$\pi(\text{Zn-Phy}) \rightarrow \pi^*(\text{Zn-Phy})$
	H-2→ L+1 (25%)	3.3723	367 (364)	0.2458	π (Zn-Phy)+ π (π -bridge) $\rightarrow \pi^*$ (Zn-Phy)
	H-1 \rightarrow L+2 (18%)				π (Zn-Phy) $\rightarrow \pi^*$ (Zn-Phy)+ $\pi^*(\pi$ -bridge)
	H-3→ LUMO (17%)				π (4-MPH)+ π (Zn-Phy) $\rightarrow \pi^*$ (Zn-Phy)+ π^* (π -bridge)
	H-5→ LUMO (16%)				π (4-MPH) $\rightarrow \pi^*$ (Zn-Phy)+ π^* (π -bridge)
	H-2→ L+2 (41%)	3.7710	328 (319)	0.1426	$\pi(\text{Zn-Phy}) + \pi(\pi\text{-bridge}) \rightarrow \pi^*(\text{Zn-Phy}) + \pi^*(\pi\text{-bridge})$
	$H-12 \rightarrow LUMO$ (21%)				π (4-MPH)+ π (Zn-Phy) $\rightarrow \pi$ *(Zn-Phy)+ π *(π -bridge)
	H-9→ LUMO (16%)				$\pi(4\text{-MPH}) \rightarrow \pi^*(\text{Zn-Phy}) + \pi^*(\pi\text{-bridge})$
GD2-N1	HOMO→ LUMO (93%)	1.8331	676	0.0884	$\pi(\text{BPA}) + \pi(\text{Zn-Phy}) \rightarrow \pi^*(\text{Zn-Phy}) + \pi^*(\pi\text{-bridge})$
	$H-1 \rightarrow LUMO(50\%)$	2.2932	540	0.5140	$\pi(\text{Zn-Phy}) \rightarrow \pi^*(\text{Zn-Phy}) + \pi^*(\pi\text{-bridge})$
	H-2→ LUMO (20%)				$\pi(\text{Zn-Phy})+\pi(\text{BPA}) \rightarrow \pi^*(\text{Zn-Phy})+\pi^*(\pi\text{-bridge})$
	H-2→ L+1 (17%)				$\pi(\text{Zn-Phy}) + \pi(\text{BPA}) \rightarrow \pi^*(\text{Zn-Phy})$
	H-2→ L+1 (55%)	2.7334	453	1.1157	$\pi(\text{Zn-Phy}) + \pi(\text{BPA}) \rightarrow \pi^*(\text{Zn-Phy})$
	$H-1 \rightarrow LUMO (16\%)$				π (Zn-Phy) $\rightarrow \pi^*$ (Zn-Phy)+ $\pi^*(\pi$ -bridge)
	H-1→ L+2 (15%)				π (Zn-Phy) $\rightarrow \pi^*$ (Zn-Phy)+ π^* (π -bridge)
	H-1→ L+1 (40%)	2.9441	421	0.6538	$\pi(\text{Zn-Phy}) \rightarrow \pi^*(\text{Zn-Phy})$
	HOMO \rightarrow L+2 (27%)				$\pi(\text{BPA}) + \pi(\text{Zn-Phy}) \rightarrow \pi^*(\text{Zn-Phy})$
	H-2→ L+2 (15%)				π (Zn-Phy)+ π (BPA) $\rightarrow \pi^*$ (Zn-Phy)+ $\pi^*(\pi$ -bridge)
	H-2→ LUMO (14%)				$\pi(\text{Zn-Phy})+\pi(\text{BPA}) \rightarrow \pi^*(\text{Zn-Phy})+\pi^*(\pi\text{-bridge})$
	H-3→ L+1 (25%)	3.3340	371	0.3956	π (Zn-Phy)+ π (π -bridge) $\rightarrow \pi^*$ (Zn-Phy)
	H-1→ L+2 (23%)				π (Zn-Phy) $\rightarrow \pi^*$ (Zn-Phy)+ π^* (π -bridge)
	H-4→ LUMO (12%)				π (4-MPH) $\rightarrow \pi^*$ (Zn-Phy)+ π^* (π -bridge)
	H-3→ L+2 (31%)	3.7288	332	0.2346	π (Zn-Phy)+ π (π -bridge) $\rightarrow \pi^*$ (Zn-Phy)+ π^* (π -bridge)
	H-8→ L+1 (16%)				π (Zn-Phy)+ π (BPA) $\rightarrow \pi^*$ (Zn-Phy)

 Table S2 Assignments of optical absorption bands of dye GD2, GD2-N1, GD2-N2 and GD2-2N based on TD-DFT calculations.

	H-11 \rightarrow LUMO (14%) H-14 \rightarrow L+1 (31%) H-15 \rightarrow L+1 (23%)	4.0644	305	0.1452	$\pi(4-\text{MPH}) + \pi(\text{BPA}) \rightarrow \pi^*(\text{Zn-Phy}) + \pi(4-\text{MPH}) + \pi(\text{Zn-Phy}) \rightarrow \pi^*(\text{Zn-Phy}) + \pi(2-\text{Phy}) + \pi(4-\text{MPH}) \rightarrow \pi^*(\text{Zn-Phy})$	π*(π-bridge)) /)
GD2-N2	HOMO \rightarrow LUMO (93%) H-1 \rightarrow LUMO (53%) HOMO \rightarrow L+1 (27%) H-2 \rightarrow L+1 (18%)	1.8164 2.3585	682 525	0.2106 0.6344	$\pi(\text{BPA}) + \pi(\text{Zn-Phy}) \rightarrow \pi^*(\text{Zn-Phy}) + \\\pi(\text{Zn-Phy}) \rightarrow \pi^*(\text{Zn-Phy}) + \pi^*(\pi\text{-bridg}) \\\pi(\text{BPA}) + \pi(\text{Zn-Phy}) \rightarrow \pi^*(\text{Zn-Phy}) \\\pi(\text{Zn-Phy}) + \pi(\text{BPA}) \rightarrow \pi^*(\text{Zn-Phy})$	π*(π-bridge) ge)
	H-2→ L+1 (56%)	2.7559	449	0.9883	π (Zn-Phy)+ π (BPA) $\rightarrow \pi^{*}$ (Zn-Phy)	
	H-1→ L+1 (36%)	2.9389	421	0.6473	π (Zn-Phy) $\rightarrow \pi^*$ (Zn-Phy)	
	HOMO \rightarrow L+2 (21%)				$\pi(\text{Zn-Phy})+\pi(\text{BPA}) \rightarrow \pi^*(\text{Zn-Phy})+$	$\pi^*(\pi ext{-bridge})$
	$H-2 \rightarrow L+2 (42\%)$	3.2979	375	0.4464	$\pi(\text{Zn-Phy}) + \pi(\text{BPA}) \rightarrow \pi^*(\text{Zn-Phy}) +$	$\pi^*(\pi ext{-bridge})$
	$H-5 \rightarrow LUMO (14\%)$	2 5201	221	0.1100	π (4-MPH) π *(Zn-Phy)+ π *(π -bridge)	
	$H-9 \rightarrow LUMO (42\%)$	3.7391	331	0.1183	$\pi(\text{BPA}) \to \pi^*(\text{Zn-Phy}) + \pi^*(\pi\text{-bridge})$)
	$H-3 \rightarrow L+2 (24\%)$	4 00 4 9	202	0 1127	$\pi(\text{Zn-Phy}) + \pi(\pi - \text{bridge}) \rightarrow \pi^*(\text{Zn-Phy})$	$(\pi)^+ \pi^*(\pi)$
	$H-14 \rightarrow L+1 (22\%)$	4.0948	302	0.1127	π (4-MPH)+ π (Zn-Phy) $\rightarrow \pi^*$ (Zn-Phy) π (DDA) $\rightarrow \pi^*$ (Zn Phy))
	$H = 11 \longrightarrow L + 1 (17\%)$				$\pi(\text{DrA}) \rightarrow \pi^*(\text{ZII-FIIy})$ $\pi(4 \text{ MDH}) \rightarrow \pi^*(7n \text{ Phy})$	
	$\Pi^{-}\Pi^{-}\Pi^{-}L^{+}\Pi^{-}(\Pi^{-}/0)$				$\mathcal{M}(4-1/111) \rightarrow \mathcal{K}(211-111y)$	
GD2-2N	$HOMO \rightarrow LUMO (94\%)$	1.7163	722	0.1642	$\pi(BPA)+\pi(Zn-Phv) \rightarrow \pi^*(Zn-Phv)+\pi$	τ*(π-bridge)
	$H-1 \rightarrow LUMO (95\%)$	2.0249	612	0.0655	$\pi(BPA) \rightarrow \pi^*(Zn-Phy) + \pi^*(\pi-bridge)$	(
	H-2→ LUMO (59%)	2.3369	530	0.7256	$\pi(\text{Zn-Phy}) \rightarrow \pi^*(\text{Zn-Phy}) + \pi^*(\pi\text{-bridg})$	ge)
	$H-1 \rightarrow L+1 (15\%)$				$\pi(\text{BPA}) \rightarrow \pi^*(\text{Zn-Phy})$	- /
	H-3→ L+1 (53%)	2.8160	440	0.7571	$\pi(\text{Zn-Phy}) + \pi(\text{BPA}) \rightarrow \pi^*(\text{Zn-Phy})$	
	H-2→ L+2 (15%)				π (Zn-Phy) $\rightarrow \pi^*$ (Zn-Phy)+ π^* (π -bridge	ge)
	H-2→ L+1 (46%)	2.9401	421	0.7124	$\pi(\text{Zn-Phy}) \rightarrow \pi^*(\text{Zn-Phy})$	
	H-3→ LUMO (23%)				$\pi(\text{Zn-Phy})+\pi(\text{BPA}) \rightarrow \pi^*(\text{Zn-Phy})+\pi$	τ*(π-bridge)
	H-3→ L+2 (37%)	3.4592	358	0.5518	$\pi(\text{Zn-Phy}) + \pi(\text{BPA}) \rightarrow \pi^*(\text{Zn-Phy}) + \pi$	τ*(π-bridge)
	$H-5 \rightarrow LUMO (13\%)$				$\pi(4\text{-MPH}) \rightarrow \pi^*(\text{Zn-Phy}) + \pi^*(\pi\text{-bridg})$	ge)
	H-7→ LUMO (10%)				$\pi(\text{BPA}) + \pi(4\text{-MPH}) \rightarrow \pi^*(\text{Zn-Phy}) +$	$\pi^*(\pi ext{-bridge})$
	$H-15 \rightarrow LUMO (19\%)$	3.7061	334	0.1133	$\pi(4-MPH)+\pi(BPA) \rightarrow \pi^*(Zn-Phy)+\tau$	τ*(π-bridge)
	$H-4 \rightarrow L+2 (14\%)$				$\pi(\text{Zn-Phy}) + \pi(\text{BPA}) \rightarrow \pi^*(\text{Zn-Phy}) + \tau$	τ*(π-bridge)
	$H-5 \rightarrow L+1 (13\%)$				$\pi(4\text{-MPH}) \rightarrow \pi^*(\text{Zn-Phy})$	_
0*	is exper	rimental		results	from re	ef.

Fig. S2. The plots of the $\eta_{LHE}(\lambda)$ curves for all sensitizers.

Parameters			A adsorp	otion geometry		B adsorption geometry				
		GD2	GD2-N1	GD2-N2	GD2-2N	GD2	GD2-N1	GD2-N2	GD2-2N	
		Bond ler				gths (Å)				
	$C_1 - C_2$	1.508	1.511	1.511	1.512	1.493	1.491	1.491	1.490	
	$C_1 - C_3$	1.507	1.509	1.504	1.506	1.504	1.504	1.504	1.504	
	$C_1 - C_4$	1.370	1.367	1.365	1.366	1.379	1.378	1.379	1.377	
	$C_2 - O_1$	1.228	1.228	1.227	1.227	1.313	1.308	1.309	1.307	
	$C_2 - O_2$	1.343	1.344	1.342	1.343	1.285	1.290	1.290	1.290	
	C ₃ —O ₃	1.336	1.337	1.336	1.337	1.261	1.261	1.260	1.261	
	$C_3 - O_4$	1.229	1.229	1.228	1.228	1.260	1.260	1.260	1.260	
A	O ₂ —Ti _{surface}	1.941	1.943	1.950	1.951					
	O ₃ —Ti _{surface}	1.898	1.891	1.884	1.887					
	O ₁ —Ti _{surface}					2.190	2.225	2.216	2.227	
В	O ₂ —Ti _{surface}					2.197	2.153	2.158	2.145	
	H ₁ —O _{surface}	0.986	0.986	0.986	0.986	0.988	0.988	0.988	0.988	
	H ₂ —O _{surface}	0.987	0.987	0.987	0.987	0.983	0.983	0.983	0.983	
					Bond an	ngles (°)				
	$C_2 - C_1 - C_3$	128.70	127.83	126.29	126.57	117.60	118.29	118.173	118.52	
	$O_1 - C_2 - O_2$	120.49	120.46	121.12	120.35	128.88	128.84	128.89	128.97	
	$O_3 - C_3 - O_4$	120.68	120.41	120.56	120.62	125.51	125.58	125.62	125.47	
	Dihedral a									
($D_2 - C_2 - C_1 - C_4$	128.67	124.18	113.41	117.31	164.24	165.28	168.43	165.59	
0	$C_3 - C_3 - C_1 - C_4$	156.30	163.80	171.85	169.07	97.25	92.65	93.66	96.06	

Table S3 Selected bond lengths (Å), bond angles (°) and torsion angles (°) of dye GD2, GD2-N1, GD2-N2 and GD2-2N on TiO₂ surface systems.

Fig. S3. Possible adsorption configurations of the sensitizers on the semiconductor surface.

Fig. S4. Densities of photo-excited electrons for all dye sensitized TiO₂ systems under the condition of the Badsorption configuration.