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Figure S1: Oscillator strength f0n between the ground and excited states as a function of energy gap

Vn − V0 for (a) D11 and (b) D21.

S1 CPEWT in triplet states involving a hydrogen-bond network

S1.1 Oscillator strength

In our dynamical analysis, the initial electron-wavepackets are supposed to be photoexcited states.

The oscillator strength f0n of D11 and D21 (see Fig. 8 in the main text) as a function of energy gap

Vn − V0 is shown in Fig. S1. We observe photo-excitable states around 2 – 3 eV in energy gap. The

initial electron-wavepacket is prepared by coherently superposing these photo-excited states weighted

with the oscillator strength, and the mean potential energy is approximately equal to 3 eV.

S1.2 Connecting the electron-wavepackets with different reference MOs

As mentioned in the main text, the electron wavepacket dynamics undergoes discontinuity of the

reference MOs to technically break down the proper time-evolution. We can conveniently connect the

electron-wavepackets expressed by the different sets of reference MOs by maximizing the overlap of

them instead of employing multi-reference methods. See Fig. S2 for each two sets of MOs for D11

and D21. In the present work, the electron-wavepacket |Ψelec〉 is expanded in the series of reordered

adiabatic states |Φα〉:

|Ψelec〉 =
∑
α

Cα|Φα〉 (1)

Here “reordered” means that the order of the adiabatic states that is originally ascending order in

energy is changed so that the overlap of |Ψelec〉 with that of the previous point along the time-evolution

becomes as close to the unit matrix up to the phase as possible. Recall that {Cα} is the time-dependent

coefficients. The phase of each state is also reversed if necessary for continuity. We can conveniently
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Figure S2: Spatial distribution of the frontier MOs at selected times. (a) System D11 at t = 0 fs, in

which two SOMOs and two LUMOs are quasi-degenerate. (b) System D11 at t = 6.5 fs. At this point

the MO characters switch from (a) to (b). SOMO(1) and LUMO are interchanged. It affects the rest

of the MOs to break the one-to-one correspondence among them along the time evolution. (c) and

(d) are those for D21.
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avoid the divergence in derivatives at a conical intersection by means of this reordering procedure.

Note that the reordered adiabatic states are still the eigenstates of the electronic Hamiltonian Ĥ(el).

The set of reference MOs switches from that involving the Mn d-shell as one of the SOMOs to that

bearing the Rydberg-like state.

In practice, the continuity of electron-wavepacket is materialized by means of following method.

Let us define the overlap of the electron-wavepacket represented in the different sets of reference MOs:

〈Ψ1
elec|Ψ2

elec〉 =
∑
αβ

C1∗
α C

2
β〈Φ1

α|Φ2
β〉 (2)

in which the superscripts 1 and 2 specify the set of reference MOs. The problem we need to solve is

to optimize {C2
β} for given {C1

α} and {〈Φ1
α|Φ2

β〉}. We actually minimized the following function f

f({C2
β}) = −Re(〈Ψ1

elec|Ψ2
elec〉)2 + Im(〈Ψ1

elec|Ψ2
elec〉)2 + λ(1−

∑
β

|Cβ|2)2 (3)

with λ denotes the Lagrange undetermined multiplier relevant to the normalization. This function

f({C2
β}) is solved numerically to obtain {C2

β} with which we restart the electron-wavepacket dynamics.

Technically it is not easy to evaluate the overlap matrix of the reordered adiabatic states 〈Φ1
α|Φ2

β〉

for those given at mutually different nuclear positions. The reordered adiabatic states are further

expanded in the series of configuration state functions (CSFs):

|Φα〉 =
CSF∑
I

CIα|ΦI〉 (4)

Thus the overlap matrix defined in Eq. (2) can be rewritten:

〈Ψ1
elec|Ψ2

elec〉 =
∑
αβ

C1∗
α C

2
β

CSF∑
IJ

C1∗
IαC

2
Jα〈Φ1

I |Φ2
J〉

≈
∑
αβ

C1∗
α C

2
β

CSF∑
IJ

C1∗
IαC

2
Jα

1

Ne

MO∑
ij

aIJij 〈φ1i |φ2j 〉 (5)

with φ1i for instance being a molecular orbital at the reference point 1. We have approximated the

CSF overlap matrix in the second line. Here aIJij denotes the spin-free one-electron coupling constant

and Ne does the number of electrons. [1] If the reference sets of MOs are the same as each other, this

equation holds exactly. Although the approximated method of wavepacket connection is employed,

properties such as charge and unpaired electron population can be smoothly connected (see Sec. S1.3).

It indicates that this approximation sufficiently works in the present system.

S1.3 Time-evolution of the properties along the SET paths

As shown in Fig. S3a, conical intersections can be found in the excited states with the energy gap

Vn−V0 being around 3 eV. The conical intersection seen around t = 4 to 5 fs are especially important,
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Figure S3: Time evolution of the selected properties along the SET path of D11 (K0/K1). The graphs

belonging to the left and right columns use the reference sets of MOs of Fig. S2a and Fig. S2b,

respectively. (a) Potential energy gap Vn−V0 (solid lines), state population |Cn|2 (pseudo color map),

and SET mean potential 〈V 〉 (dashed line). (b) RHA −RHD to indicate Hn transfer.
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Figure S4: Time evolution of the selected properties along the SET path of D21 (K2/K3). The graphs

belonging to the left and right columns use the MOs of Fig. S2c and Fig. S2d, respectively. (a)

Potential energy gap Vn − V0 (solid lines), state population |Cn|2 (pseudo color map), and SET mean

potential 〈V 〉 (dashed line). (b) RHA −RHD to indicate Hn transfer.

because they are one of the typical points relevant to the CPEWT. As shown in Fig. S3b, RHA−RHD

relevant to Hn (n = 2, 3) transfer is around zero in both cases, in which RHA and RHD are internuclear

distances between the proton–(acceptor atom) and proton–(donor atom) in the initial nuclear config-

uration, respectively. Passing across the point of RHA−RHD = 0 designates the proton transfer. H3 is

obviously accelerated toward the acceptor side almost at the same time as the nonadiabatic transition

at t = 4.3 fs. It indicates that the proton transfer dynamically couples with the electron-wavepacket

transfer. We find qualitatively the same results for D21 as shown in Fig. S4.

The electronic states of Hn (n = 1, 2, 3) in the CPEWT can be characterized in a little more

quantitatively by means of the “regional population analysis”, in which the atomic populations in

each region predefined within the super-molecule are individually summed up. [2–4] We first assign

the total electron density and the unpaired electron density to the atoms by means of Löwdin’s method
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Figure S5: Time evolution of the selected properties along the SET path of D11 (K0/K1). The graphs

belonging to the left and right columns use the reference sets of MOs of Fig. S2a and Fig. S2b,

respectively. (a) Regional charge QM . (b) Regional unpaired electron population DM .

to obtain atomic population. [5] Mulliken’s original method [6] is known to be inappropriate for such

a system that a basis set includes diffuse functions. The resulting regional populations are referred

to as regional total electron population PM and regional unpaired electron population DM , with M

denoting a region of the system. We actually utilize the regional charge QM = ZM−PM instead of PM

for the sake of convenience, in which ZM is the sum of nuclear charges in each region. The “regions”

to distinguish the submolecular parts of the entire system are defined to be Hn (n = 1, 2, 3), the EPD,

the EA, the PA, and the EPR (refer to Fig. 2 of the main text for the definitions). QM and DM of D11

are shown in Fig. S5a and Fig. S5b, respectively. QM on Hn (n = 1, 2, 3) is all kept approximately

+0.4, and DM on them is kept virtually zero. This is the same situation as the previous study with

the Y-shaped acceptor, and we can say that the relevant protons to the proton-relay transfer of the

CPEWT locally move as if they are in the ground state. [4]

It is important to distinguish the CPEWT from the H radical transfer (H atom migration), because
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Figure S6: Time evolution of the selected properties along the SET path of D21 (K2/K3). The graphs

belonging to the left and right columns use the reference sets of MOs of Fig. S2c and Fig. S2d,

respectively. (a) Regional charge QM . (b) Regional unpaired electron population DM .

only the former can induce charge separation by itself. One can make that distinction by closely looking

at QM and DM . If hydrogen atom migration actually takes place in the present Hn relay-transfer, QM

and DM on Hn should be virtually zero and unity, respectively. This is not the case in the present

dynamics. We can find qualitatively the same results for D21 as shown in Fig. S6.
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Table S1: Energies of each component for estimating the energy profile.

First group Second group

Component Energy / eV Component Moleculea) Energy / eV

3[D11] -55710.59 H2O
1H2O -2067.64

2[D12]+ -55708.42 EBf–e− 1R− -9357.17

2[D13]+ -55708.35 EBf 2R -9356.74

2[D14] -55695.96 PBf–H+ 1RH -9372.95

3[D15] -55678.91 PBf 1R− -9357.17

3[D21] -57743.80 XEA 2R -9356.74

2[D22]+ -57741.72 XEA–e− 1R− -9357.17

2[D23]+ -57741.41 XPA 1R− -9357.17

2[D24] -57729.22 XPA–H+ 1RH -9372.95

3[D25] -57712.86 O2
3O2 -4068.82

1[D11] -55709.07

a) R = CH3–C6H4–O (4-methylphenyl)

S2 Energy profile for the series of reactions

S2.1 Energies of the first and the second groups

The total energy of each intermediate is estimated by summing up the energy of the first and the

second groups (see Sec. 3.4.1 in the main text). Recall that the first group is defined to contain the

EA, the PA, the EPD, the EPR, and Hn, and the second one consists of all the other parts including

the XEA, the XPA, the EBf, and the PBf. The energies of the components of the first and the second

groups are shown in Table S1. As for the first group, we optimize the geometries of the super molecules

shown in Fig. 8 in the main text with the charge and the spin state indicated in Table S1. The spin

multiplicity is basically chosen to be triplet if the number of electrons is an even number, and to be

doublet if it is an odd number. One exception is 1[D11], which is used to combine a triplet O2 molecule

to estimate energy profile, because a singlet EPD is left after the O=O bond formation. As for the

second group, we use the geometry-optimized energy of the molecules listed in the column “Molecule”

of Table S1. For the second group, the spin multiplicity is basically chosen to be singlet if the number

of electrons is an even number, and to be doublet if it is odd. Again we have one exception, 3O2,

which is just mentioned above.
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Table S2: System components used to estimate the energy profile.

Core Coefficients of the second group components

H2O EBf–e− EBf PBf–H+ PBf XEA–e− XEA XPA–H+ XPA O2

K0
3[D11] 2 1 0 1 0 0 4 0 4 0

K02
2[D12]+ 2 1 0 1 0 1 3 0 4 0

K03
2[D13]+ 2 1 0 1 0 1 3 0 4 0

K04
2[D14] 2 1 0 1 0 1 3 1 3 0

K1
3[D11] 2 0 1 0 1 1 3 1 3 0

K12
2[D12]+ 2 0 1 0 1 2 2 1 3 0

K13
2[D13]+ 2 0 1 0 1 2 2 1 3 0

K14
2[D14] 2 0 1 0 1 2 2 2 2 0

K15
3[D15] 2 1 0 1 0 2 2 2 2 0

K2
3[D21] 1 1 0 1 0 2 2 2 2 0

K22
2[D22]+ 1 1 0 1 0 3 1 2 2 0

K23
2[D23]+ 1 1 0 1 0 3 1 2 2 0

K24
2[D24] 1 1 0 1 0 3 1 3 1 0

K3
3[D21] 1 0 1 0 1 3 1 3 1 0

K32
2[D22]+ 1 0 1 0 1 4 0 3 1 0

K33
2[D23]+ 1 0 1 0 1 4 0 3 1 0

K34
2[D24] 1 0 1 0 1 4 0 4 0 0

K35
3[D25] 1 1 0 1 0 4 0 4 0 0

K’0
1[D11] 0 1 0 1 0 4 0 4 0 1

S2.2 System components to estimate the energy of intermediates

The total energies of the K-states and intermediates are estimated by summing up the energies of

the first group and the second group as shown in Table S2. The total number of electrons and

nuclei are conserved throughout. Note that Kn1 (n = 0, 1, 2, 3) is missing in Table S2. It has the

same components Kn but in the electronic excited states, which is corresponding to the result of

the CPEWT. The energy is estimated from the result of nonadiabatic electron-wavepacket dynamics

shown in the main text.
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