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Table S1 BVMO species that show activity towards linear substrate 2-octanone

Accession number BVMO group [1] Activity

mo4 ro03063 I + [2]

mo20 ro08137 I + [2]

CPMO Comamonas sp. 

strain NCIMB 9872

(Q8GAW0)

I ++ [2]

BVMO AFL838 (crystal 

structure PDB: 5J7X)

B8N653 I kcat/KM = 5.3 

x105 [M-1 s-1] [3]

mo21 ro10187 I & II + [2]

PAMO quadruple 

variant (structure 

evolved from T. fusca 

BVMO, PDB: 2YLT)

Q47PU3 II  kcat/KM = 9.2 

x103 [M-1 s-1] [4]
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https://www.rcsb.org/pdb/search/smartSubquery.do?smartSearchSubtype=TreeEntityQuery&t=1&n=2021


Figure S1 Distance between the peroxy-FAD oxygen and carbonyl carbon of 

phenylacetone and 2-octanone during the molecular dynamics simulations of the WT 

and variants of PAMO. 5 replicas of MD simulations were conducted for each of 

complex system.
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Figure S2 Superposition of the reference structures of the mutants R258A (purple, 

replica 3), R258M (cyan, replica 1) and P253F/G254A/R258M/L443F (green, replica 

1) in complex with 2-octanone. The structures correspond to the ones with lowest 

RMSD compared to the respective average MD structures. In these replicas the 

substrate still maintains a catalytically favorable pose (carbonyl close to the C4a-

peroflyflavin). Note that in the quadruple mutant L289 moves substantially towards 

P253F and G254A, preventing the approach of 2-octanone to R258M at the pocket 

entrance. As a result, 2-octanone adopts a pose similar to that in the WT enzyme with 

the alkyl tail nested in a hydrophobic pocket formed by L289, L338 and L340.  In 

contrast, in the R258A and R258M mutants 2-octanone adopts such a pose that the 

alkyl tail moves away from the hydrophobic pocket and towards the entrance of the 

active site. 
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Figure S3 Distance between the peroxy-FAD oxygen and carbonyl carbon of 

cyclopentanone and 2-phenylcyclohexanone during the molecular dynamics 

simulations of the WT and variants of PAMO. 5 replicas of MD simulations were 

conducted for each of complex system.

5



Figure S4 MD reference structures of the PAMO WT in complexe with 

cyclopentanone: A) replica 1; B) replica 2; C) replica 4 (replica 3 is similar to replica 

5); D) replica 4. 
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Figure S5 MD reference structures of the WT PAMO complexed with 2-

phenylhexanone: A) replica 2 (replica 1 and replica 3 are similar to replica 2); B) 

replica 4 (5 is similar to replica 4); 
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Figure S6 MD reference structures of the P253F/G254A/L289A/R258M/L443F 

variant in complex with 2-octanone: A) replica 1; B) replica 3 (replica 2 is similar to 

replica 3); C) replica 4 (replica 5 is similar to replica 4).
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