Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © The Royal Society of Chemistry 2017

ELECTRONIC SUPPLEMENTARY INFORMATION

DEC. 28, 2017

Transition States of Spin-Forbidden Reactions

Bo Yang, Laura Gagliardi and Donald. G. Truhlar

Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA. E-mail: yang3227@umn.edu, truhlar@umn.edu

Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA

Inorganometallic Catalyst Design Center, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA.

CONTENTS:

1. Coupling constants χ

2. Optimized structures on the lowest mixed-spin PES for the CO association reaction of the Fe(CO)₄ Complex

3. Optimized structures on the lowest mixed-spin PES for the α -H elimination reaction of the model W Complex

Energies are in hartrees. DFT calculations performed with the unrestricted Kohn-Sham theory suing the of M06-L exchange-correlation functional. In section 2, the def2-TZVPP basis set is used for C, O, and Fe atoms. In section 3, the 6-31G* basis set is used for C, H, O atoms, and the def2-TZVP basis set is used for the W atoms. Enthalpy (H) and Gibbs free energy (G) were computed at 298.15 Kelvin and 1 atmosphere pressure.

1. Coupling constants $\boldsymbol{\chi}$

The coupling constant χ was determined for each system by the following procedure:

- (a) Initial saddle point geometry optimization is performed by employing the *TSSMM* Perl script along with the *Gaussian* program as described in the main text. An initial guess for the coupling constant χ is provided, which was determined based on parametrization to an atom or monoatomic ion;
- (b) A reaction coordinate scan was performed along the minimum energy path is using the optimized saddle point geometry from step (a) to locate a representative geometry along the reaction coordinate where the low- and high-spin surfaces are close in energy;
- (c) Singlet-triplet excitation energies are computed at the representative geometry using the ADF2016.103 program package. The spin-orbit coupling is included by employing the spinorbit ZORA Hamiltonian. The M06-L exchange-correlation functional is used with a Slatertype ZORA/QZ4P basis set.
- (d) The singlet-triplet splitting of the representative geometry is determined by averaging the corresponding singlet-triplet excitation energies as calculated in step (c). The value of coupling constant χ is adjusted so that the difference between the eigenvalues of the following 2 × 2 matrix reproduces the singlet-triplet splitting.

$$\begin{pmatrix} E_1 & \chi \\ \chi & E_2 \end{pmatrix}$$

where E_1 and E_2 are the energies of low- and high-spin states computed from the single-point calculations using *Gaussian* for the representative geometry.

(e) Steps (a) to (d) are repeated until the value of the coupling constant χ converges to the desired precision.

Table S1: Calculated single-point energies, singlet–triplet excitation energies, and the coupling constant χ for the Fe(CO)_n and model W representative geometries at the final iteration. All energies are given in hartrees. The corresponding representative geometries are provided below Figs. S1 and S2.

	W model complex	Fe(CO) _n
E ₁	-377.17345	-1830.55724
E_2	-377.17352	-1830.55782
	0.58562	0.46338
Eexcitation	0.59541	0.46343
	0.63180	0.46387
Coupling constant χ	0.011103	0.008513

Fig. S1: The representative geometry of the $Fe(CO)_4 + CO$ system.

Fe	0.178049000000	0.009280000000	-0.19551000000
С	-2.144052000000	0.815201000000	-0.494665000000
С	0.80290000000	1.720906000000	-0.633644000000
С	1.854855000000	-0.738539000000	-0.148327000000
С	-0.086581000000	0.136956000000	1.607737000000
С	-0.649950000000	-1.606451000000	-0.59840300000
0	-3.204639000000	0.589052000000	-0.161325000000
0	1.204884000000	2.76903000000	-0.84610600000
0	2.897081000000	-1.207209000000	-0.065615000000
0	-0.218539000000	0.196606000000	2.743749000000
0	-1.134408000000	-2.625993000000	-0.78645000000

Fig. S2: The representative geometry of the model W system.

С	2.915106000000	-0.460781000000	0.678123000000
Н	2.820323000000	0.008037000000	1.667776000000
Н	3.39370300000	-1.437088000000	0.855271000000
С	1.546643000000	-0.68542000000	0.087061000000
Н	1.640453000000	-1.098729000000	-0.94680000000
W	-0.37463000000	-0.020996000000	-0.009772000000
Н	1.076289000000	-1.514110000000	0.695179000000
С	3.816112000000	0.368450000000	-0.213198000000
Н	3.415218000000	1.379260000000	-0.358326000000
Н	4.82110800000	0.462101000000	0.213296000000
Н	3.918386000000	-0.08894700000	-1.205617000000
0	-1.28174000000	-1.463951000000	-0.893137000000
Н	-1.247778000000	-2.330947000000	-0.449669000000
0	-1.66828600000	0.695078000000	1.231325000000
Н	-1.653141000000	0.452794000000	2.166417000000
С	-0.109694000000	1.900851000000	-0.837373000000
Н	0.273115000000	2.52721500000	-0.010182000000
Н	0.573449000000	1.997851000000	-1.689247000000
Н	-1.090655000000	2.305011000000	-1.123577000000

2. Optimized structures on the lowest mixed-spin PES for the CO association reaction of the Fe(CO)₄ Complex

O atoms are shown in red; C in grey; Fe in purple.

Fe(CO)₄ + CO (reactant)

Fig. S3: Fe(CO)4 + CO complex (reactant).

SCF	E _{ZP}	Н	G
-1830.565360	-1830.528169	-1830.512874	-1830.575159
Fe	0.35482600 -0.	00961700 -0.2261	4000
С	-2.80001800 0.	79962600 -0.4569	5300
С	0.54818300 1.	80229800 -0.6421	4200
С	2.11602300 -0.	50733700 -0.0884	5600
С	-0.01026500 0.	07321000 1.56873	1400
С	-0.40619400 -1.	65115900 -0.66323	1600
0	-3.54622000 0.	10266800 0.0241	6400
0	0.68128800 2.	91169100 -0.8746	1300
0	3.21270900 -0.	81884200 0.01192	2300
0	-0.22961700 0.	12095600 2.6913	1000
0	-0.85714200 -2.	67269500 -0.9062	8800

Fe(CO)₄ + CO (transition structure)

Fig. S4: Fe(CO)4 + CO complex (transition structure).

SCF	Ezp	Н	G
-1830.564540	-1830.527409	-1830.513150	-1830.570728
Fe	0.22263800 -0.	00566200 -0.2050	3200
С	-2.27341700 0.	91969500 -0.5580	7600
С	0.79742800 1.	73086500 -0.6277	9100
С	1.90083700 -0.	75682600 -0.1278	1600
С	-0.06714800 0.	13003000 1.6001	0700
С	-0.66247400 -1.	60038800 -0.5939	3400
0	-3.26184800 0.	56528200 -0.1352	1800
0	1.19508700 2.	77745200 -0.8490	6300
0	2.94286200 -1.	22538000 -0.0615	6500
0	-0.22363600 0.	20055100 2.7322	4600
0	-1.14745700 -2.	61703500 -0.7894	1200

Fe(CO)₅ (product)

Fig. S5: Fe(CO)₅ complex (product).

SCF	E _{ZP}	Н	G
-1830.616960	-1830.574884	-1830.562145	-1830.615675
Fe	0.0000600 0	.00033600 -0.0002	9500
С	1.81586600 0	.00060800 -0.0004	5400
С	-0.00002200 -1	.21961500 -1.3402	1000
С	-1.81585400 0	.00075400 -0.0005	0300
С	-0.00003800 -0	.55301600 1.7251	3200
С	0.00007900 1	.77147100 -0.3841	6500
0	2.95693200 0	.00065900 -0.0003	9100
0	-0.00006800 -1	.99023800 -2.1866	0200
0	-2.95691900 0	.00082500 -0.0004	5500
0	-0.00010000 -0	.90264900 2.8150	9700
0	0.00011200 2	.89016000 -0.6265	3900

3. Optimized structures on the lowest mixed-spin PES for the α -H elimination reaction of the model W Complex

O atoms are shown in red; H in light gray, C in dark Grey; W in Blue.

W(CH₃)(C₃H₇)(OH)₂ (reactant)

Fig. S6: W(CH₃)(C₃H₇)(OH)₂ complex (reactant).

SCF	Ezp	Н	G
-377.214384	-377.060080	-377.046863	-377.099766
С	-2.50599000 0.	80875000 0.2783	1700
Н	-2.42978000 0.	87169600 1.3761	4800
Н	-3.29329400 1.	52978300 0.0036	9300
С	-1.17932200 1.	22962500 -0.3526	2900
Н	-1.30089800 1.	27432600 -1.4514	9600
W	0.49596700 -0.	04848100 0.0505	0100
Н	-0.94880200 2.	26591700 -0.0428	4700
С	-2.96148400 -0.	58790000 -0.1144	5500
Н	-2.28153800 -1.	36238600 0.2689	3400
Н	-3.96244500 -0.	81403100 0.2711	5200
Н	-2.98974600 -0.	70153100 -1.2064	0700
0	1.64397700 1.	44403300 -0.3582	3300
Н	1.22595200 2.	31740600 -0.4384	6900
0	0.49410200 -0.	94895200 1.7396	6100
Н	-0.19914300 -0.	83307900 2.4048	0100
С	0.26970600 -1.	43014300 -1.5448	6300
Н	-0.59187900 -2.	09433400 -1.3801	9500
Н	0.07131900 -0.	88842400 -2.4817	0400
Н	1.15657400 -2.	06035000 -1.7103	5900

W(····H)(CH₃)(=C₃H₆)(OH)₂ (transition structure)

Fig. S7: $W(\cdots H)(CH_3)(=C_3H_6)(OH)_2$ complex (transition structure).

SCF	E _{ZP}	Н	G
-377.169256	-377.018825	-377.006386	-377.056746
С	2.75476500 -0	.49692100 0.6626	5200
Н	2.66846800 -0	.03811600 1.6577	6400
Н	3.19563100 -1	.49505600 0.8197	6100
С	1.39220000 -0	.59199800 0.0392	9900
Н	1.40125200 -1	.14322200 -0.9370	7500
W	-0.48542700 -0	.04574900 -0.0097	8200
Н	0.62772500 -0	.92650400 1.0799	5600
С	3.68608400 0	.33536600 -0.2096	6500
Н	3.29355400 1	.35035000 -0.3411	9700
Н	4.68482600 0	.40829800 0.2353	8400
Н	3.79640600 -0	.10658300 -1.2074	7300
0	-1.41339700 -1	.47110300 -0.8927	7200
Н	-1.32731100 -2	.36616000 -0.5232	0400
0	-1.79388100 0	.67727500 1.2232	0500
Н	-1.75031500 0	.44148600 2.1576	5700
С	-0.22357400 1	.89123400 -0.8323	9900
Н	0.11804400 2	.54791300 -0.0148	9800
Н	0.44852800 2	.01363400 -1.6861	8700
Н	-1.23385200 2	.22393900 -1.1194	4000

W(H)(CH₃)(=C₃H₆)(OH)₂ (product)

Fig. S8: $W(H)(CH_3)(=C_3H_6)(OH)_2$ complex (product).

SCF	E _{ZP}	Н	G
-377.209233	-377.056625	-377.044223	-377.094628
W	-0.42387000 -0	.03021600 0.0424	3900
0	-0.54695900 -1	.59597800 -1.0603	1400
Н	-1.38476400 -2	.05907900 -0.8922	7700
0	-2.07683400 -0	.36779800 1.0194	6300
Н	-2.09920000 -0	.45365300 1.9793	2500
С	-1.19429700 1	.74966400 -0.8114	4000
Н	-1.16507500 2	.46066600 0.0309	9700
Н	-0.64596000 2	.20075800 -1.6429	6300
Н	-2.24817300 1	.61217900 -1.0885	9500
Н	0.10061200 0	.01381000 1.6824	3000
С	1.39659000 0	.37442700 -0.0264	2700
Н	1.22850000 0	.24599300 -1.1478	1000
С	2.78803600 0	.62890000 0.4035	6700
Н	2.79144700 0	.71717400 1.4987	7400
Н	3.12713400 1	.60782200 0.0267	7600
С	3.77244700 -0	.45270200 -0.0342	6000
Н	4.78897300 -0	.22737400 0.3087	9300
Н	3.48486900 -1	.42988500 0.3690	6600
Н	3.80168700 -0	.54392400 -1.1268	0400