Electronic Supplementary Information (ESI):

Theoretical aspects in structural distortion and the electronic properties of lithium peroxide under high pressure

Pornmongkol Jimlim,^{ab} Komsilp Kotmool,^b Udomsilp Pinsook,^{ac} Suttichai Assabumrungrat,^d Rajeev Ahujak,^{ef} and Thiti Bovornratanaraks^{ac}

 ^a Extreme Conditions Physics Research Laboratory (ECPRL), Physics of Energy Materials Research Unit, Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
^b Department of Physics, Mahidol Wittayanusorn School, Nakhon Pathom 73170, Thailand
^c Thailand Center of Excellence in Physics, Commission on Higher Education, Bangkok 10400, Thailand
^d Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Chulalongkorn University, Bangkok 10330, Thailand
^e Condensed Matter Theory Group, Department of Physics and Astronomy, Box 516, Uppsala University, S-75120 Uppsala, Sweden
^f Applied Materials Physics, Department of Materials and Engineering, Royal Institute of Technology (KTH), S-100 44 Stockholm, Sweden

> E-mail: thiti.b@chula.ac.th Phone: +66 (0)22187554. Fax: +66 (0)22531150

Table S1. Structural parameters of Li ₂ O ₂ for the $P6_3/mmc$, $P2_1$, $P2_1/c$, and $P2_1/c^{\dagger}$ structures at the different pressures
Table S2. Mulliken charges of the Li and O atoms for the $P6_3/mmc$, $P2_1$, and $P2_1/c$ structures of Li ₂ O ₂ at the different pressures
Figure S1. Plot of the lattice constants (a and c) versus pressure (0-74 GPa)
Figure S2. (a)-(b), (c)-(d), and (e)-(f) represent the interatomic distances of the Li(1)-O(1), Li(2)-O(1), and Li(1)-Li(2) in the pressure ranges of 6-15 GPa and 30-50 GPa, respectively
Figure S3. (a) Plot of the normalized lattice constants <i>versus</i> pressure, (b) Plot of the β <i>versus</i> pressure, (c) Plot of the interatomic distance <i>versus</i> pressure, (d) the <i>P</i> 6 ₃ / <i>mmc</i> structure at 0 GPa, (e) the <i>P</i> 2 ₁ structure at 75 GPa, (f) the <i>P</i> 2 ₁ / <i>c</i> structure at 150 GPa, and (g) the <i>P</i> 2 ₁ / <i>c</i> structure at 500 GPaS7
Figure S4. Phonon dispersion curves and partial phonon density of states (PDOSs) for the $P2_1/c$ structure at pressures: (a)-(d) 75, 150, 300, and 500 GPa, respectively
Figure S5. Phonon dispersion curves and partial phonon density of states (PDOSs) for two structures of Li_2O_2 at 150 GPa: (a) the $P2_1/c$ structure, and (b) the $P2_1/c^{\dagger}$ structure
Figure S6. Partial density of states (PDOS) of Li and O for the <i>P6₃/mmc</i> structure at 5, 8, 11, 14, 38, 39, 40, and 41 GPa: (a)-(e) for the s-states of Li, (f)-(j) for the s-states of O, and (k)-(r) for the p-states of O

Figure S7. (a) Isosurface of the electron localization functions (ELF) in the $P6_3/mmc$ structure at 40 GPa. (b) Plot of the ELF isosurface value for the $P6_3/mmc$ structure in the pressure range of 0-70 GPa.	.S12
Figure S8. Electron density maps of various structures of Li_2O_2 projected onto (020) plane of:	
(a) the Po_3/mmc structure at 0 GPa, (b) the $P2_1$ structure at 75 GPa, (c)-(d) the $P2_1/c$ structure at 150 and 500 GPa, respectively	S13
Figure S9. ELFs for various structures of Li_2O_2 projected onto (020) plane of: (a) the $P6_3/mmc$ structure at 0 GPa (b) the $P2_1$ structure at 75 GPa (c)-(d) the $P2_1/c$ structure at 150 and 500 GPa	
respectively	S13
Figure S10. Crystal structures of Li_2O_2 for three phases at the different pressures. (a) the $P6_3/mmc$ structure at 0 GPa. (b) the $P2_2$ structure at 75 GPa. (c)-(d) the $P2_2/c$ structure at 150 and 500 GPa	
respectively	S14

			paramete	r							
Pressure		$(P6_3/mmc: a = b \neq c, \alpha = \beta = 90^0, \gamma = 120^0)$				A .	a	Atomic coordinates			
(GPa)	Structure	$(P2_1, P2_1)$	$(P2_1, P2_1/c : a \neq b \neq c, \alpha = \gamma = 90^0, \beta \neq 90^0)$								
(014)		a (Å)	b (Å)	c (Å)	β (degree)	-	-	Х	У	Z	
						Li(1)	2a	0.00000	0.00000	0.00000	
0	P6 ₃ /mmc	3.1858	3.1858	7.7182	90.0000	Li(2)	2c	0.33333	0.66667	0.25000	
						O(1)	4f	0.33333	0.66667	0.64950	
						Li(1)	2a	0.00000	0.00000	0.00000	
10	P63/mmc	3.0767	3.0767	7.4208	90.0000	Li(2)	2c	0.33333	0.66667	0.25000	
						O(1)	4f	0.33333	0.66667	0.64645	
						Li(1)	2a	0.00000	0.00000	0.00000	
11	$P6_3/mmc$	3.0694	3.0694	7.3780	90.0000	Li(2)	2c	0.33333	0.66667	0.25000	
						O(1)	4f	0.33333	0.66667	0.64568	
	P63/mmc		2.9020	6.9536	90.0000	Li(1)	2a	0.00000	0.00000	0.00000	
39		2.9020				Li(2)	2c	0.33333	0.66667	0.25000	
						O(1)	4f	0.33333	0.66667	0.64135	
						Li(1)	2a	0.00000	0.00000	0.00000	
40	P63/mmc	2.8987	2.8987	6.9332	90.0000	Li(2)	2c	0.33333	0.66667	0.25000	
						O(1)	4f	0.33333	0.66667	0.64091	
						Li(1)	2a	0.00000	0.00000	0.00000	
75	P6 ₃ /mmc	2.7781	2.7781	6.6468	90.0000	Li(2)	2c	0.33333	0.66667	0.25000	
						O(1)	4f	0.33333	0.66667	0.63816	
						Li(1)	2a	0.84403	0.72368	0.11400	
75	00	2 5 6 0 5	2 5042	6 1767	01.0505	Li(2)	2a	0.65603	0.51017	0.38600	
75	$P2_{1}$	2.5695	2.5942	6.4767	91.8505	O(1)	2a	0.34300	0.21666	0.15252	
						O(2)	2a	0.15705	0.01719	0.34747	
	DO (0.5005	0 50 41	5 0454	110 0454	Li	4e	0.45790	0.89333	-0.13599	
15	$P2_{1/c}$	2.5695	2.5941	7.0454	113.2454	0	4e	-0.00463	0.40036	-0.09748	
75	$P2_1/c^{\dagger}$	$P2_{1/c}$ †	6 4771	0.5041	< 0002	150 1160	Li	4e	0.72995	0.60668	0.09399
		6.4//1	2.5941	6.8903	158.1169	0	4e	0.19042	1.09963	-0.40707	
						Li(1)	2a	0.85698	0.72372	0.11396	
136	<i>P</i> 2 ₁	2 4 4 2 4	2.4876	6.1569	89.7118	Li(2)	2a	0.64303	0.51011	0.38604	
		2.4424				O(1)	2a	0.35399	0.22011	0.14973	
						O(2)	2a	0.14603	0.01376	0.35026	
10.6		0.4400	0 4077	6 6110	111 2022	Li	4e	0.47094	0.89325	-0.13607	
136	$P2_{1}/c$	2.4423	2.4877	6.6119	111.3833	0	4e	0.00379	0.39687	-0.10025	
126	$D2/a^{\dagger}$	m/t	6 1570	0 4077	6 6252	150 4040	Li	4e	0.74306	0.60677	0.10702
136	PZ_1/C	6.1570	6.1570 2.4877	6.6353	158.4040	0	4e	0.20427	1.10314	-0.39600	
						Li(1)	2a	0.85965	0.72409	0.11390	
150	<i>P</i> 2 ₁	2.4197	2.4701	6.1009	00.0407	Li(2)	2a	0.64037	0.50973	0.38611	
150					89.2687	O(1)	2a	0.35608	0.22093	0.14924	
						O(2)	2a	0.14394	0.01296	0.35076	
150	$P2_{1}/c$	2.4194	2.4703	6.5333		Li	4e	0.47361	0.89276	-0.13616	
150					110.9788	0	4e	0.00547	0.39595	-0.10074	
150	$P2_1/c$ (similar)	6.1008	2.4703	6.5333	150 0 4 4 5	Li	4e	0.52639	0.60724	0.89023	
					158.2667	0	4e	0.99453	0.10405	0.39379	
150	$P2_1/c^{\dagger}$	6.1009 2.47	0.4500		150 451 6	Li	4e	0.74587	0.60726	0.10975	
150			2.4/03	6.5926	158.4716	0	4e	0.20690	1.10404	-0.39386	
200		0.0.1.1.1	0.0.50	- 0		Li	4e	0.49472	0.88747	-0.13824	
300	$P2_{1}/c$	2.2464	2.3473	5.9562	107.5213	0	4e	0.01976	0.38790	-0.10386	
500	DO (0.1174		5 5700	105 4205	Li	4e	0.49349	0.61747	1.14122	
500	$P \angle 1/C$	2.11/4	2.2416	5.5723	105.4396	0	4e	0.96991	0.11908	1.10491	

Table S1. Structural parameters of Li_2O_2 for the $P6_3/mmc$, $P2_1$, $P2_1/c$, and $P2_1/c^{\dagger}$ structures at the different pressures.

†Reference 10

Structural parameters obtained by using COMPSTRU programme proposed by Flor et al³⁸.

Table S2. Mulliken charges of the Li and O atoms for the $P6_3/mmc$, $P2_1$, and $P2_1/c$ structures of Li₂O₂ at the different pressures. The charge spilling parameters for the $P6_3/mmc$, $P2_1$, and $P2_1/c$ structures are in the ranges of 0.80-0.83 %, 0.85-0.88 %, and 0.89-1.06 %, respectively. The effective ionic valences is calculated by using the difference between the formal ionic charge and the Mulliken charge on the anion species in the crystal proposed by Segall *et al.* ³⁴

Pressure	Structure		Effective ionic *							
(GPa)		Li(1)	Li(2)	Li(3)	Li(4)	O(1)	O(2)	O(3)	O(4)	valences ($ e $)
0	P6 ₃ /mmc	0.99	0.99	0.77	0.77	-0.88	-0.88	-0.88	-0.88	0.12
0^{\dagger}	$P6_3/mmc^{\dagger}$	0.99	0.99	0.77	0.77	-0.88	-0.88	-0.88	-0.88	0.12
4	P6 ₃ /mmc	1.00	1.00	0.77	0.77	-0.88	-0.88	-0.88	-0.88	0.12
6	P6 ₃ /mmc	1.00	1.00	0.77	0.77	-0.88	-0.88	-0.88	-0.88	0.12
8	P6 ₃ /mmc	1.01	1.01	0.77	0.77	-0.89	-0.89	-0.89	-0.89	0.11
10	P6 ₃ /mmc	1.01	1.01	0.77	0.77	-0.89	-0.89	-0.89	-0.89	0.11
11	P6 ₃ /mmc	1.01	1.01	0.77	0.77	-0.89	-0.89	-0.89	-0.89	0.11
12	P63/mmc	1.02	1.02	0.77	0.77	-0.89	-0.89	-0.89	-0.89	0.11
15	P6 ₃ /mmc	1.02	1.02	0.77	0.77	-0.89	-0.89	-0.89	-0.89	0.11
20	P63/mmc	1.03	1.03	0.77	0.77	-0.90	-0.90	-0.90	-0.90	0.10
25	P6 ₃ /mmc	1.04	1.04	0.76	0.76	-0.90	-0.90	-0.90	-0.90	0.10
30	P63/mmc	1.05	1.05	0.76	0.76	-0.91	-0.91	-0.91	-0.91	0.09
35	P63/mmc	1.06	1.06	0.76	0.76	-0.91	-0.91	-0.91	-0.91	0.09
39	P63/mmc	1.06	1.06	0.76	0.76	-0.91	-0.91	-0.91	-0.91	0.09
40	P63/mmc	1.06	1.06	0.76	0.76	-0.91	-0.91	-0.91	-0.91	0.09
41	P6 ₃ /mmc	1.07	1.07	0.76	0.76	-0.91	-0.91	-0.91	-0.91	0.09
45	P63/mmc	1.07	1.07	0.76	0.76	-0.92	-0.92	-0.92	-0.92	0.08
50	P6 ₃ /mmc	1.08	1.08	0.76	0.76	-0.92	-0.92	-0.92	-0.92	0.08
55	P63/mmc	1.08	1.08	0.76	0.76	-0.92	-0.92	-0.92	-0.92	0.08
60	P63/mmc	1.09	1.09	0.76	0.76	-0.92	-0.92	-0.92	-0.92	0.08
65	P6 ₃ /mmc	1.10	1.10	0.76	0.76	-0.93	-0.93	-0.93	-0.93	0.07
70	P6 ₃ /mmc	1.10	1.10	0.75	0.75	-0.93	-0.93	-0.93	-0.93	0.07
75	P6 ₃ /mmc	1.11	1.11	0.75	0.75	-0.93	-0.93	-0.93	-0.93	0.07
75	$P2_{1}$	0.90	0.90	0.90	0.90	-0.90	-0.90	-0.90	-0.90	0.10
135	$P2_{1}$	0.92	0.92	0.92	0.92	-0.92	-0.92	-0.92	-0.92	0.08
136	$P2_{1}/c$	0.92	0.92	0.92	0.92	-0.92	-0.92	-0.92	-0.92	0.08
150	$P2_{1}/c$	0.92	0.92	0.92	0.92	-0.92	-0.92	-0.92	-0.92	0.08
300	$P2_{1}/c$	0.94	0.94	0.94	0.94	-0.94	-0.94	-0.94	-0.94	0.06
500	$P2_{1}/c$	0.95	0.95	0.95	0.95	-0.95	-0.95	-0.95	-0.95	0.05

†Reference 10

*Reference 34

Figure S1. Plot of the lattice constants (*a* and *c*) versus pressure (0-74 GPa). Insets represent the enlargement in the rectangular dashed lines.

Figure S2. (a)-(b), (c)-(d), and (e)-(f) represent the interatomic distances of the Li(1)-O(1), Li(2)-O(1), and Li(1)-Li(2) in the pressure ranges of 6-15 GPa and 30-50 GPa, respectively. The rectangular solid lines mark the abnormal change of the interatomic distances in the pressure ranges of 10-11 GPa and 39-40 GPa.

Figure S3. (a) Plot of the normalized lattice constants *versus* pressure, (b) Plot of the β *versus* pressure, (c) Plot of the interatomic distance *versus* pressure, (d) the *P*6₃/*mmc* structure at 0 GPa, (e) the *P*2₁ structure at 75 GPa, (f) the *P*2₁/*c* structure at 150 GPa, and (g) the *P*2₁/*c* structure at 500 GPa.

Figure S4. Phonon dispersion curves and partial phonon density of states (PDOSs) for the $P2_1/c$ structure at pressures of: (a)-(d) 75, 150, 300, and 500 GPa, respectively.

Figure S5. Phonon dispersion curves and partial phonon density of states (PDOSs) for two structures of Li₂O₂ at 150 GPa: (a) the $P2_1/c$ structure, and (b) the $P2_1/c^{\dagger}$ structure. The yellow and black rectangular dashed lines represent the differences between the $P2_1/c$ and $P2_1/c^{\dagger}$ structure in the Y-A and E-C paths, respectively. The vertical dashed lines mark the peak of the highest frequency phonon modes in the $P2_1/c$ structures.

Figure S6. Partial density of states (PDOSs) of Li and O for the $P6_3/mmc$ structure at 5, 8, 11, 14, 38, 39, 40, and 41 GPa: (a)-(e) for the s-states of Li, (f)-(j) for the s-states of O, and (k)-(r) for the p-states of O. The arrows represent the trends of changes with increasing pressure. The vertical dashed lines represent the Fermi level.

S10

Figure S7. (a) Isosurface of the electron localization functions (ELF) in the $P6_3/mmc$ structure at 40 GPa. (b) Plot of the ELF isosurface value for the $P6_3/mmc$ structure in the pressure range of 0-70 GPa.

Figure S8. Electron density maps of various structures of Li_2O_2 projected onto (020) plane of: (a) the $P6_3/mmc$ structure at 0 GPa, (b) the $P2_1$ structure at 75 GPa, (c)-(d) the $P2_1/c$ structure at 150 and 500 GPa, respectively. The electron density isosurfaces values of 0.200 for (a, b, c) and 1.412 for (d).

Figure S9. ELFs for various structures of Li_2O_2 projected onto (020) plane of: (a) the $P6_3/mmc$ structure at 0 GPa, (b) the $P2_1$ structure at 75 GPa, (c)-(d) the $P2_1/c$ structure at 150 and 500 GPa, respectively. The ELF isosurface values of 0.001 for (a) and 0.002 for (b, c, d).

Figure S10. Crystal structures of Li_2O_2 for three phases at the different pressures: (a) the $P6_3/mmc$ structure at 0 GPa, (b) the $P2_1$ structure at 75 GPa, (c)-(d) the $P2_1/c$ structure at 150 and 500 GPa, respectively.