Structural and catalytic properties of the

$Au_{25-x}Ag_{x}(SCH_{3})_{18}$ (x = 6, 7, 8) Nanocluster

Gihan Panapitiya[†], Hong Wang[†], Yuxiang Chen[‡], Ejaz Hussain[‡], Rongchao Jin^{‡*}, and James P. Lewis[†]*

[†]Department of Physics and Astronomy, West Virginia University, Morgantown, WV, 26506-6315

Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213

E-mail: james.lewis@mail.wvu.edu, rongchao@andrew.cmu.edu

Structural trends of 3-Ag alloyed Au25 cluster

S2

Figure S1: Structural trends of (a) $[Au_{22}Ag_3(SCH_3)_{18}]^0$, (b) $[Au_{22}Ag_3(SH)_{18}]^0$ and (c) $[Au_{22}Ag_3(SH)_{18}]^{-1}$

The structural trends depicted in Figure S1 agree with the those of Ref. 1.

Figure S2: (a) Partial density of states for 0 and 3 Ag alloyed Au₂₅(SCH₃)₁₈ and (b) orbital density of states of Au₂₂Ag₃(SCH₃)₁₈

Figure S3: Orbital density of states of (a) 0, (b) 6, (c) 7 and (d) 8 Ag alloyed Au25(SCH3)18

HOMO and LUMO molecular orbitals and electron densities of non-alloyed and alloyed Au25 cluster

Figure S4: (a) HOMO and (b) LUMO orbitals of $Au_{25}(SCH_3)_{18}$ (isovalue = 0.0002)

Figure S5: (a)-(j) HOMO electron densities of 6-Ag alloyed nanoclusters in the order of increasing energy (isovalue = 0.0002).

Figure S6: (a)-(j) HOMO electron densities of 7-Ag alloyed nanoclusters in the order of increasing energy (isovalue = 0.0002).

Figure S7: (a)-(j) HOMO electron densities of 8-Ag alloyed nanoclusters in the order of increasing energy (isovalue = 0.0002).

Figure S8: (a)-(j) LUMO electron densities of 6-Ag alloyed nanoclusters in the order of increasing energy (isovalue = 0.0002).

Figure S9: (a)-(j) LUMO electron densities of 7-Ag alloyed nanoclusters in the order of increasing energy (isovalue = 0.0002).

Figure S10: (a)-(j) LUMO electron densities of 8-Ag alloyed nanoclusters in the order of increasing energy (isovalue = 0.0002).

CO adsorbed isomers considered in this work. The first number next to the label is the relative energy and the second number is the Boltzmann weight calculated based on the relative energy per atom.

Figure S11: CO adsorbed 6-Ag alloyed isomers.

Figure S12: CO adsorbed lowest energy 7-Ag alloyed isomers.

Figure S13: CO adsorbed 8-Ag alloyed isomers.

Bond lengths of $Au_{25}(SCH_3)_{18}$ obtained with BLYP

Figure S14: Bond lengths obtained with BLYP functional.

The bond lengths in **Error! Reference source not found.** agree quite well the experimental values given in Ref. 2

Figure S15: Different Ag/Au sites considered for CO adsorption.

Figure S16: Symmetries displayed by the lowest energy (a) 6- , (b)7- and (c)8-Ag alloyed isomers

Figure S17: Boltzmann distributions of the relative energies per atom. $p(E_i) = exp(-[E_i - E_{min}]/k_BT) / \sum exp(-[E_i - E_{min}]/k_BT)$, where E_i is rhe energy per atom, kB is the Boltzmann constant and T is the room temperature(298K).

Figure S18: Energies of CO adsorbed (a) 0-, (b) 6-, (c) 7-, (d) 8- and (e) 25-Ag alloyed isomers considered in Figure 6 of the main text.

Figure S19: (a) HOMO and (b) LUMO electron densities of Ag25 nanoculster (isovalue = 0.0002).

Site 1, 2

Figure 20: Adsorption energies of Au25/2CO systems. Energies are weighted using the Boltzmann weights calculated based on the energy of the two-CO-adsorbed isomers. The corresponding numerical values are given in Table S1.

Derivation of the CO-CO interaction energy and the Ag contribution to the adsorption energy in the Au25/2CO system

In the following derivation, adsorption energies are indicated with the superscript, 'ads'. All the other quantities are total energies.

Au25/2CO^{ads} = Au25/CO(site1)^{ads} + Au25/CO(site2)^{ads} + CO-CO^{intr}
=
$$[1] + [2] + [3]$$

[1] = Au25/CO(site1) – EAu25 – CO

= Au25/CO(site1, Ag=0) + Au25/CO(site1, Ag \neq 0) – Au25(Ag=0) – Au25(Ag \neq 0) – CO

= Au25/CO(site1, Ag=0) - Au25(Ag=0) - CO + Au25/CO(site1, Ag \neq 0) - EAu25(Ag \neq 0)

= Au25/CO(site1,Ag=0) ^{ads} + Ag-contribution(site1)

Similarly, [2] = Au25/CO(site2,Ag=0) ^{ads} + Ag-contribution(site2)

Therefore, the total Ag contribution is,

Ag-contribution(site1) + Ag-contribution(site2) = [1] - Au25/CO(site1,Ag=0) ^{ads} + [2] - Au25/CO(site2,Ag=0) ^{ads} = Au25/CO(site1)^{ads} - Au25/CO(site1,Ag=0) ^{ads} + Au25/CO(site2)^{ads} - Au25/CO(site2,Ag=0) ^{ads} = Difference between the adsorption energies when CO is at sites 1 and 2 seperately

Table S1: Numerical values of Au25/2CO adsorption energy (Au25-2CO), CO-CO interaction energy (CO-CO), Au25/CO adsorption energy at site 1 (Au25-CO (site1)), Au25/CO adsorption energy at site 2 (Au25-CO (site2)), and the relative energy (E_{rel}) of ten lowest energy CO alloyed bimetallic clusters. All the energies are in eV.

	Au25-2CO	00-00	Au25-CO (site1)	Au25-CO (site2)	E _{rel}
#Ag = 0	-2.0948	0.1234	-1.162	-1.0562	0
#Ag = 6	-2.4656	0.6338	-1.609	-1.4904	0
	-2.8147	0.6815	-1.8871	-1.6091	0.1915
	-2.3227	-0.0515	-1.0234	-1.2478	0.5886
	-2.3853	0.8325	-1.6168	-1.601	0.602
	-2.4244	0.8604	-1.4406	-1.8442	0.6383
	-2.2838	0.8337	-1.6821	-1.4354	0.8626
	-2.2139	0.1917	-1.2397	-1.166	0.9161
	-2.1574	0.6828	-1.3561	-1.4841	1.0404
	-2.129	0.3044	-1.1814	-1.252	1.1496
	-1.6913	0.1708	-0.9544	-0.9077	1.8896
#Ag = 7	-1.4542	0.0999	-0.5897	-0.9644	0
	-2.0599	0.2627	-1.312	-1.0106	0.278

	-2.1369	0.2622	-1.5578	-0.8414	0.292
	-1.821	0.4149	-1.0522	-1.1838	0.3806
	-2.0352	0.0728	-1.0153	-1.0927	0.4083
	-1.9269	0.0782	-0.6765	-1.3285	0.4452
	-1.6662	-0.026	-0.9749	-0.6654	0.5701
	-1.8604	-0.0636	-0.9082	-0.8885	0.6342
	-1.5682	-0.5072	-0.595	-0.466	0.6625
	-1.249	-0.1619	-0.6046	-0.4824	0.8195
#Ag = 8	-1.5429	0.1962	-0.7699	-0.9692	0
	-1.9612	0.5989	-1.1435	-1.4166	0.284
	-1.9742	-0.0547	-0.9307	-0.9887	0.5933
	-2.0051	0.4247	-1.3528	-1.077	0.7056
	-1.7334	0.3652	-1.1388	-0.9597	0.7296
	-1.9958	0.0148	-0.9734	-1.0372	0.7641
	-1.662	0.1137	-0.8599	-0.9158	0.8461
	-0.8518	-0.3602	-0.4559	-0.0357	0.9457
	-1.3883	0.0815	-0.6764	-0.7934	0.9698
	0.0093	-0.6709	-0.2386	0.9188	1.0919

Atomic coordinates of the lowest energy isomers shown in Figure 2 of the main text.

6-Ag			
Au	5.3033210	8.8058220	9.0034970
Au	7.6682770	9.8188730	10.8394830
Au	9.6811940	6.5600820	11.2876340
Ag	7.5860790	4.2159630	9.7855380
Au	3.3207570	6.8642560	10.2852740
Au	2.2075780	9.7736920	9.2047420
Au	4.7849240	10.5354120	6.2455860
Ag	6.4906920	8.0744630	6.5241750
Ag	6.0317920	7.1931440	11.1919970
Au	4.1132420	6.2499960	13.3122130
Au	1.5970540	4.6139080	11.1034480
Au	2.9938770	4.7020330	8.3458550
Au	5.4785660	6.0211200	8.5727700
S	5.5596680	10.9881260	10.3758790
S	9.8628230	8.9869370	11.6120000

S	9.6782590	4.1056680	11.3326180
S	2.9913390	11.5235930	7.6203960
S	6.5553230	9.8638460	4.6620050
S	6.3752300	7.1826640	13.7608490
S	1.7712910	5.4817750	13.4312050
S	0.8205130	3.4794140	9.0453930
Au	5.4461250	3.2360400	8.2249400
Au	3.2595600	2.1599040	6.2244260
Au	1.2441420	5.4929500	5.8330520
Ag	3.0514610	7.5877790	7.5583770
Ag	8.0568070	5.1116360	6.9490340
Au	8.6667280	1.9997130	7.8220640
Au	6.1573770	1.7413400	10.8540430
Au	4.5256350	4.3229140	10.6983580
Ag	4.5052050	4.8693060	5.9406330
Au	6.7961790	5.7515020	3.5570750
Au	9.5840580	7.5188820	6.0270650
Au	7.9245840	7.3067490	8.8373690
S	5.3787900	1.0743880	6.7799640
S	1.0673170	3.0522390	5.4941110
S	1.1582830	7.9524010	5.8041720
S	8.0355570	0.5525560	9.7315830
S	4.3039510	2.3878880	12.3680410
S	4.5245020	4.8839350	3.3364190
S	9.1307660	6.5284120	3.7798370
S	10.1238360	8.5728110	8.1758910
S	8.9772220	3.0687950	5.6457050
S	0.9671660	8.0601440	10.4410510
7_Δα			
7-Ag			
Ag	5.3390010	9.0668000	8.8378030
Au	7.7879590	9.9362840	10.9015060
Au	9.7875050	6.5421480	11.3440120
Ag	8.1551180	4.4898010	9.5374570
Ag	3.0478770	6.7331930	10.2017040
Au	1.9456580	9.7717300	8.9797260
Au	4.6529870	10.5060520	6.0961060
Ag	6.6329920	7.9048110	6.4615500
Ag	6.5449640	6.5927520	11.3750320
Au	4.1350570	6.2168670	13.5524710
Au	1.4785990	4.4313980	11.1839360
Au	2.9713640	4.7113170	8.2515960
Au	5.4877380	6.0308910	8.5874320
S	5.6757890	11.0614430	10.4499090
S	9.9227270	8.9788890	11.6460670
S	9.8684670	4.0722550	11.4275240
S	2.9186990	11.5111240	7.5207410
S	6.5248650	9.8125800	4.6602580
~	6 3606870	7 1944010	13 9072600

S	1.8059070	5.4176170	13.4373250
S	0.8255110	3.4349180	9.0499680
Aq	5.1900820	3.0201630	8.3775110
Au	3.1817000	2.0676100	6.1086340
Au	1.2782000	5.5636440	5.9201000
Au	3.3973170	7.5401640	7.3955820
Au	7.7393790	5.2374290	6.8498470
Au	8.6878650	2.0583380	7.9039620
Au	6.1770050	1.6098830	11.0696170
Au	4.6034090	4.3743620	10.7362570
Aq	4.2561280	5.3885230	5.7530670
Au	6.8187160	5.6490580	3.6620760
Au	9.5717050	7.4574800	6.0641890
Au	7.9830800	7.2638650	8.8445770
S	5.2975070	1.0129100	6.7406910
S	1.0465970	3.1142030	5.4821750
S	1.2764440	8.0348320	5.9371730
S	8.0370390	0.5922770	9.7869710
S	4.2894900	2.4025920	12.4141630
S	4.5499440	4.8246700	3.2349930
S	9.1415810	6.4879440	3.8108170
S	10.1037120	8.6144820	8.1758860
S	8.8684200	3.1927270	5.7387110
S	0.8381030	8.1254820	10.4142590
8-Ag			
Ag	5.4280300	9.1043240	9.0475300
Au	7.7759680	10.0703530	11.0797840
Au	9.6788220	6.5122570	11.4112260
Au	7.5307490	4.4253720	9.7293830
Ag	3.0186240	6.7935080	10.2730930
Au	1.8791770	9.9465270	9.1032280
Au	4.7205780	10.6325920	6.1155480
Ag	6.5573420	7.7797050	6.2332340
Ag	6.6019250	6.6135190	11.4683750
Au	4.0624690	6.3170230	13.6510710
Au	1.3136410	4.5105860	11.2027840
Au	3.0111360	4.6755660	8.2512160
Au	5.4656900	6.0857140	8.5446060
S	5.6825230	11.1955490	10.5174190
S	9.8886100	8.9631080	11.7184160
S	9.6149730	4.0620450	11.2650020
S	2.9151630	11.5601290	7.5363980
S	6.5197860	9.8298650	4.6418800
S	6.3087210	7.2600200	13.9500040
S	1.7594200	5.4550570	13.4596260
S	0.7888650	3.4791140	9.0538710
Au	5.6396630	3.1930740	8.1419270
Au	3.2464950	2.1853230	6.2483370
Au	1.1549110	5.5315260	5.7992030
Ag	3.0168760	7.5202370	7.3747320

Au	7.5305420	5.0662680	6.8680930
Au	8.5232170	2.2915520	7.9280660
Au	6.2855920	1.6703260	10.9902100
Ag	4.5204490	3.8956520	10.5877860
Ag	4.7224870	4.7099240	5.9278470
Au	6.8068930	5.6959310	3.6469220
Au	9.6248000	7.5225630	5.9722990
Ag	8.4117720	6.9663560	8.7817210
S	5.3371950	1.0029430	6.7425330
S	1.0561840	3.0831240	5.5311430
S	1.0682770	7.9942570	5.7323190
S	8.1010290	0.5941300	9.7140480
S	4.3814690	2.1532750	12.5198580
S	4.5273170	4.8428650	3.3427210
S	9.1403470	6.5037270	3.7653670
S	10.2393490	8.6756730	8.0654540
S	8.8724270	3.2025140	5.6486310
S	0.8051180	8.2282890	10.4692680

Figure 21: Average CO adsorption energies at the 12 adsorbent sites in the outer shell for (a) 0, (b) 6-, (c) 7- and (d) 8-Ag alloyed structures. Adsorption energies are calculates considering the adsorption on 10 lowest energy isomers.

References

- (1) Kauffman, D. R.; Alfonso, D.; Matranga, C.; Qian, H.; Jin, R. A Quantum Alloy: The Ligand-Protected Au 25– X Ag X (SR) 18 Cluster. *J. Phys. Chem. C* **2013**, *117* (15), 7914–7923.
- (2) Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. Correlating the Crystal Structure of a Thiol-Protected Au25 Cluster and Optical Properties. J. Am. Chem. Soc. 2008, 130 (18), 5883– 5885.