Supplementary information:

Role of the doping level on localized proton motions in acceptor-doped barium zirconate proton conductors

Daria Noferini,^{†,‡} Michael M. Koza,[‡] Seikh M. H. Rahman,[†] Zach Evenson,[§] Gøran J. Nilsen,^{‡,||} Sten Eriksson,^{*,†} Andrew R. Wildes,[‡] and Maths Karlsson^{*,†}

[†]Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden. [‡]Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France.

[§]Heinz Maier-Leibnitz Zentrum (MLZ) and Physik Department, Technische Universität München, Garching 85748, Germany. ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, UK.

Supplementary figures and tables

Figure S1 Room temperature high-resolution powder XRD patterns for as-sintered $BaZ_{1-x}In_xO_{3-x/2}$ powders. The red-colored tick marks indicate the positions of Bragg reflections as predicted by a structural model based on $Pm\overline{3}m$ symmetry.

Figure S2 Chemical composition determined by SEM-EDX analysis on $BaZ_{1-x}In_xO_{3-x/2}$ pellets sintered at 1300 °C. Open symbols show expected values based on sample stoichiometry defined in synthesis.

Table S1 Crystallographic data for the as-sintered $BaZ_{1-x}In_xO_{3-x/2}$ powders obtained from the Rietveld fit of room temperature highresolution powder XRD data shown in Figure S1. The site occupancy factor (SOF) for Ba was constrained to 1 in the structural refinements. The SOFs of Zr and In indicate In dopant levels of 11, 19, and 23%, *i.e.* comparable to the target compositions of 10In/BZO, 20In/BZO, and 25In/BZO, respectively. The SOF of O is close to 1, indicating that the samples had picked up moisture (hydrated) from the atmosphere. Differences in the degree of hydration may explain the slight variation in SOF for O for 20In/BZO and 25In/BZO. B_{iso} stands for isotropic thermal parameter.

$BaZ_{1-x}In_xO_{3-x/2}$	x = 0.10	x = 0.20	x = 0.25
Space group	$Pm\overline{3}m$	$Pm\overline{3}m$	$Pm\overline{3}m$
Lattice parameter (Å)	4.2046(1)	4.2067(1)	4.2067(1)
SOF for Ba (1/2, 1/2, 1/2)	1	1	1
SOF for Zr (0, 0, 0)	0.888(4)	0.806(2)	0.769(4)
SOF for In (0, 0, 0)	0.112(4)	0.194(2)	0.231(2)
SOF for O (1/2, 0, 0)	0.999(3)	0.972(2)	0.979(2)
$B_{\rm iso}$ for Ba (Å ²)	0.651(2)	0.675(2)	0.734(3)
$B_{\rm iso}$ for Zr (Å ²)	0.353(3)	0.386(2)	0.455(3)
$B_{\rm iso}$ for In (Å ²)	0.353(3)	0.386(2)	0.455(3)
$B_{\rm iso}$ for O (Å ²)	0.86(1)	0.87(1)	1.01(1)
χ^2	2.99	2.37	2.46