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In Fig. 1 of the main text, the three nearest-neighbor (NN) and six next-nearest-neighbor

(NNN) translation vectors are

δ1 =
a√
3

( √
3

2
1
2

cotφ
)
, δ2 =

a√
3

(
−
√

3
2

1
2

cotφ
)
, δ3 =

a√
3

(
0 −1 cotφ

)
, (1)

v1 = a
(

1
2

√
3

2
0
)
, v2 = a

(
1 0 0

)
, v3 = a

(
1
2
−
√

3
2

0
)
,

v4 = a
(
−1

2
−
√

3
2

0
)
, v5 = a

(
−1 0 0

)
, v6 = a

(
−1

2

√
3

2
0
)
.

(2)

The lattice constant a and the angle φ are defined as the NNN distance and the angle

between the NN bond and the z direction, respectively.

In Eq. (1) of the main text, the NN hopping integrals in the Slater–Koster frame along

the δ = 1, 2, 3 directions (corresponding to δ1, δ2, δ3, respectively) from sublattice B to

sublattice A read
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The NNN hopping integrals along the v = 1, 2, 3, 4, 5, 6 directions (corresponding to

v1,v2,v3,v4,v5,v6, respectively) in sublattice A read
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Fig. S 1: (Color online) Band structures of graphene (a) without spin–orbit coupling (SOC)

and (b) with SOC. The blue and red curves correspond to the first-principles and tight-binding

calculations, respectively.

 tAA1zz = n
′2
1 V
′
ppσ +

(
1− n′2

1

)
V ′ppπ = V ′ppπ, tAA2zz = V ′ppπ, tAA3zz = V ′ppπ,

tAA4zz = V ′ppπ, tAA5zz = V ′ppπ, tAA6zz = V ′ppπ.

The NNN hopping integrals in sublattice B can be obtained by replacing the index A with

B in the above equations.
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Fig. S 2: (Color online) Band structures of silicene (a) without SOC and (b) with SOC. The blue

and red curves correspond to the first-principles and tight-binding calculations, respectively.

Fig. S 3: (Color online) Band structures of germanene (a) without SOC and (b) with SOC. The

blue and red curves correspond to the first-principles and tight-binding calculations, respectively.
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Fig. S 4: (Color online) Band structures of stanene (a) without SOC and (b) with SOC. The

blue and red curves correspond to the first-principles and tight-binding calculations, respectively.

Fig. S 5: (Color online) Band structures of plumbene (a) without SOC and (b) with SOC [1]. The

blue and red curves correspond to the first-principles and tight-binding calculations, respectively.
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Fig. S 6: (Color online) Band structures of stanene with SOC strength ξ0 = (a) 0.28, (b) 0.67,

and (c) 1.0 eV. With increasing SOC strength, the gap at the Γ point closes and then reopens.

ξ0 = 0.67 eV is the critical point between topologically nontrivial and trivial phases.

Fig. S 7: (Color online) The evolution lines of Wannier function centers for stanene with SOC

strength ξ0 = 1.0 eV. The green dashed line is the reference line. As the reference line is moved

up or down, it always crosses the evolution lines zero or two (even) times, indicating that stanene

with this SOC strength is a normal insulator.
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Fig. S 8: (Color online) Band structures of graphene without SOC. The line thickness represents

the weight of (a) s, (b) px + py, and (c) pz character.

Fig. S 9: (Color online) Band structures of graphene with SOC. The line thickness represents

the weight of (a) s, (b) px + py, and (c) pz character.
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Fig. S 10: (Color online) Band structures of silicene without SOC. The line thickness represents

the weight of (a) s, (b) px + py, and (c) pz character.

Fig. S 11: (Color online) Band structures of silicene with SOC. The line thickness represents the

weight of (a) s, (b) px + py, and (c) pz character.
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Fig. S 12: (Color online) Band structures of germanene without SOC. The line thickness repre-

sents the weight of (a) s, (b) px + py, and (c) pz character.

Fig. S 13: (Color online) Band structures of germanene with SOC. The line thickness represents

the weight of (a) s, (b) px + py, and (c) pz character.
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Fig. S 14: (Color online) Band structures of stanene without SOC. The line thickness represents

the weight of (a) s, (b) px + py, and (c) pz character.

Fig. S 15: (Color online) Band structures of stanene with SOC. The line thickness represents the

weight of (a) s, (b) px + py, and (c) pz character.
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Fig. S 16: (Color online) Band structures of plumbene without SOC. The line thickness represents

the weight of (a) s, (b) px + py, and (c) pz character.

Fig. S 17: (Color online) Band structures of plumbene with SOC. The line thickness represents

the weight of (a) s, (b) px + py, and (c) pz character.
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Fig. S 18: (Color online) Band structures of stanene with hydrostatic strains ∆hs = 5% (a–c),

10% (d–f), and 15% (g–i). ∆hs is defined as ∆hs = (a−a0)/a0×100%. The line thickness represents

the weight of s, px + py, and pz character, and SOC is considered.
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We have studied the electronic structures of stanene and plumbene under hydrostatic

strain. When stanene is stretched under large enough strain, the s− state at the Γ point

drops below the p states owing to the larger bond length. For example, in Figs. S 15 and

S 18, when the hydrostatic strain is increased to 15% from 0%, the s− state drops below

−4.0 eV from 0.3 eV at the Γ point. However, from the topological state, the system does

not become a normal insulator, but instead becomes a metal. This is because several bands

cross the Fermi level. Similarly, for plumbene, a band inversion between the s− and p states

can appear at the Γ point under large enough compressive strain (Figs. S 17 and S 19), but

it will also enter a metallic phase.

Band structures and edge states obtained from an effective four-band model

An effective tight-binding model is employed to study the global properties of graphene,

silicene, germanene, and stanene, which are all topological insulators (plumbene is a normal

band insulator[1–3]). By diagonalizing the model Hamiltonian (Eq. (12) of the main text),

we can obtain the band structure, as shown in Fig. S 22 (a). With increasing effective

SOC strength λeff , the gap widens in a linear manner. The effective model captures the key

features of these 2D group IVA materials near the Fermi level[4–7]. For example, there is a

Dirac cone at the K point without SOC; when SOC is considered, an energy gap is opened,

leading to a conduction-band valley at the K point[8].

2D topological insulators are characterized by topologically protected metallic edge states

with helical spin polarization residing inside the bulk gap. In order to confirm this point

in the effective model, we have investigated a zigzag nanoribbon. Figure S 22 (b) shows

the band structure of the nanoribbon with a width Ny = 50 and λeff = 0.01. From a

comparison with the bulk band structure, one can see that two bands cross the bulk gap.

We further choose two points on the two bands to perform a spatial and spin weight analysis

(kx = 2.806, E = −0.02 and kx = 3.477, E = −0.02). From Fig. S 22 (c), we can see that

the two bands are completely contributed by the edge states. The band with a positive slope

is contributed mainly by the spin-up states at the ny = 1 edge and the spin-down states at

the ny = 50 edge; the band with a negative slope is contributed mainly by the spin-down

states at the ny = 1 edge and the spin-up states at the ny = 50 edge (the spin direction is

perpendicular to the plane of the 2D material). Therefore, this effective model can be used

to describe the topological characteristics of the 2D group IVA materials.
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Fig. S 19: (Color online) Band structures of plumbene with hydrostatic strains ∆hs = −5%

(a-c), −10% (d-f) and −15% (g-i). The line thickness represents the weights of s, px + py, and pz

character and SOC is considered.
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Fig. S 20: (Color online) Band structures and spin polarizations of (a, b) silicene with Ez = 0.002

eV/Å and Bz = 0.00035 eV, (c, d) germanene with Ez = 0.02 eV/Å and Bz = 0.0065 eV, and (e, f)

stanene with Ez = 0.5 eV/Å and Bz = 0.053 eV. P 0
↑/↓ and Rp are defined as the spin polarizations

on the sides of the Fermi level and the energy range of spin polarization, respectively. To facilitate

comparison with Fig. 6 of the main text, the first two cases and the last one are chosen to be in

the critical phases C1 and C2, respectively. These results are based on the 16-band tight-binding

model.

[1] X.-L. Yu, L. Huang and J. Wu, Phys. Rev. B, 2017, 95, 125113.

[2] H. Zhao, C. W. Zhang, W. X. Ji, R. W. Zhang, S. S. Li, S. S. Yan, B. M. Zhang, P. Li and P.

J. Wang, Sci. Rep., 2016, 6, 20152.

[3] Z.-Q. Huang, C.-H. Hsu, F.-C. Chuang, Y.-T. Liu, H. Lin, W.-S. Su, V. Ozolins and A. Bansil,

New J. Phys., 2014, 16, 105018.

[4] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, Rev. Mod.

Phys., 2009, 81, 109.

[5] C.-C. Liu, W. Feng and Y. Yao, Phys. Rev. Lett., 2011, 107, 076802.

[6] M. J. Ezawa, J. Phys. Soc. Jpn., 2015, 84, 121003.

[7] T. P. Kaloni, M. Modarresi, M. Tahir, M. R. Roknabadi, G. Schreckenbach and M. S. Freund,

17



Fig. S 21: (Color online) Bz, Rp, P
0
↑ , and P 0

↓ as functions of Ez in the critical phases C1 (pink)

and C2 (yellow) for (a) silicene, (b) germanene, and (c) stanene. Rp and P 0
↑/↓ are defined in Fig.

S 20. C1 and C2 are illustrated in the phase diagram (Fig. 5 of the main text). Both Bz and

Rp exhibit nearly linear behavior in the two phases. P 0
↑ is smaller in the C2 phase than in the

C1 phase. In particular, for stanene, when Ez = 0.5 eV/Å, P 0
↑ falls to 91.3%. Conversely, |P 0

↓ | is

larger in the C2 phase than in the C1 phase. At the critical point between the two phases, the

system is not spin-polarized with Bz = 0, leading to P 0
↑ = P 0

↓ = 0, which is not marked in the

figures. These results are based on the 16-band tight-binding model.

Fig. S 22: (Color online) Electronic structures obtained from the four-band tight-binding model.

(a) The bulk band structure with λeff = 0.01. The inset shows the energy gap as a function of

λeff . (b) The band structure of the zigzag nanoribbon with a width Ny = 50 and λeff = 0.01.

(c) Spin-resolved spatial weight distributions along the y direction of the zigzag nanoribbon at

(kx = 2.806, E = −0.02) and (kx = 3.477, E = −0.02). The two points are marked in (b).
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