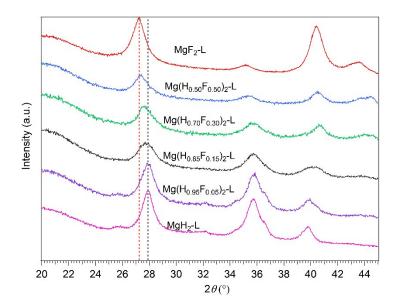
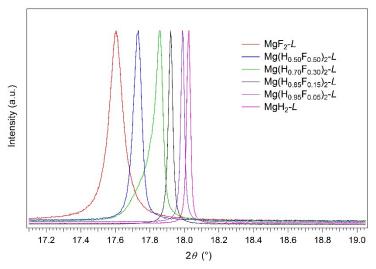
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017


Supporting information

Belonging to the manuscript

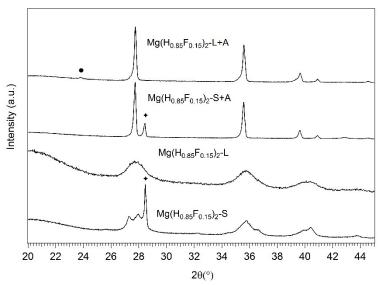
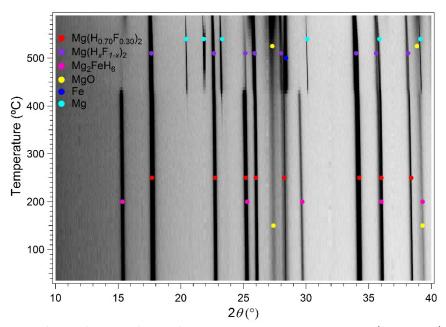
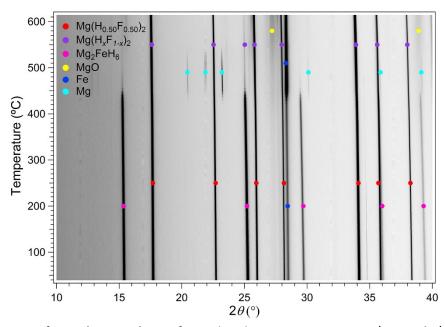

Thermodynamics and stability of the Mg-H-F system for thermochemical energy storage applications

M. S. Tortoza, T. D. Humphries, M. A. Sheppard, M. Paskevicius, M. R. Rowles, M. V. Sofianos, K. F. Aguey-Zinsou and C. E. Buckley

- Department of Physics and Astronomy, Fuels and Energy Technology Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
- Merlin Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
- * E-mail: <u>terry_humphries81@hotmail.com</u>

Fig. S1. Ex-situ XRD data for samples ball milled for 40 hours (L) collected at room temperature. $\lambda = 1.5418$ Å. Red and black dot line's refers to main peaks of MgF₂ and MgH₂ respectively.

Fig. S2. *In situ* SR-XRD at room temperature of Mg(H_xF_{1-x})₂-L samples ball milled for 40 hours and annealed. $\lambda = 1.000389(1)$ Å.

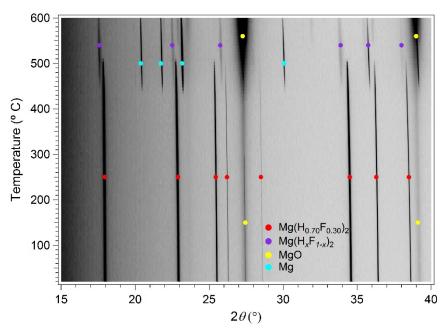
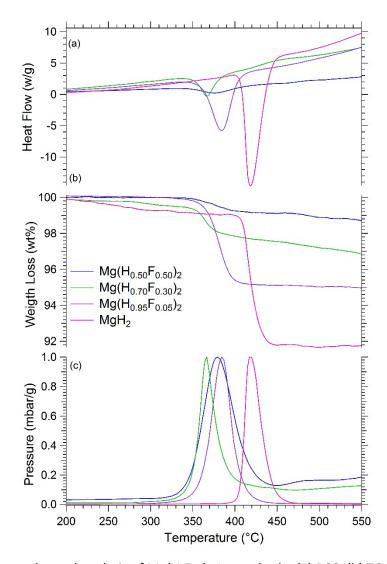

Fig. S3. Comparison between SR-XRD of samples ball milled for 10 and 40 hours and then annealed (A). -8 Mg₂FeH₆, -8 = Si. $\lambda = 1.5418$ Å, at room temperature.

Fig. S4. *In situ* XRD for Mg(H_{0.70}F_{0.30})-*L* performed under vacuum using a $\Delta T/\Delta t = 10^{\circ}$ C/min before 200 °C and 5 °C/min after 200 °C. $\lambda = 1.000389(1)$ Å.


Fig. S5. *In situ* XRD for Mg(H_{0.50}F_{0.50})-*L* performed under vacuum using a $\Delta T/\Delta t = 10^{\circ}$ C/min before 200 °C and 5 °C/min after 200 °C. $\lambda = 1.000389(1)$ Å.

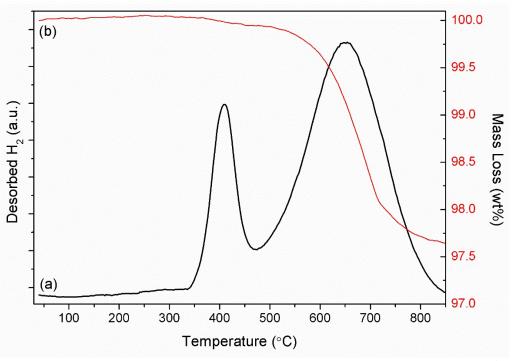

Fig. S6. *In situ* XRD for Mg(H_{0.95}F_{0.05})-*L* performed under vacuum using a $\Delta T/\Delta t = 10^{\circ}$ C/min before 200 °C and 5 °C/min after 200 °C. $\lambda = 1.000389(1)$ Å .

Table S1. Summary of parameters and data collected from PCT desorption measurements of $Mg(H_{0.85}F_{0.15})_2$ -S Pressure and H_2 wt% uncertainties

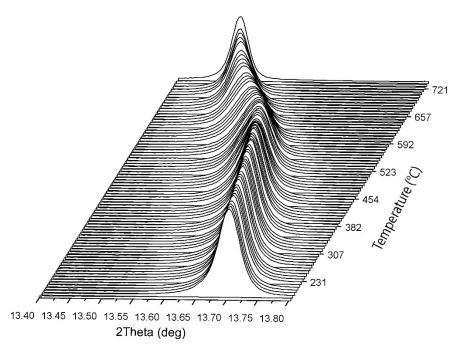

Temperature (°C)	Observed Desorption H ₂ (wt%)	Final Pressure (bar)	Theoretical H ₂ wt%	Difference between observed vs theoretical H2 wt%
438	4.57 ± 0.14	14.5	5.4	0.83
444	4.37 ± 0.29	24.1	5.4	1.03
450	4.85 ± 0.19	4	5.4	0.55
461	4.61 ± 0.15	19.8	5.4	0.79

Fig. S7. Simultaneous thermal analysis of Mg(H_xF_{1-x})₂-L samples by (a) DSC, (b) TGA and (c) MS. $\Delta T/\Delta t$ = 10 °C/min. DSC and MS data are normalised to the mass of the sample.

Fig. S8. Simultaneous thermal analysis of Mg(H_{0.50}F_{0.50})-L. by (a) MS and (b) TGA. $\Delta T/\Delta t$ = 10 °C/min.

Fig. S9. *In situ* XRD for Mg($H_{0.50}F_{0.50}$)-*L*. λ = 0.774541(1) Å.