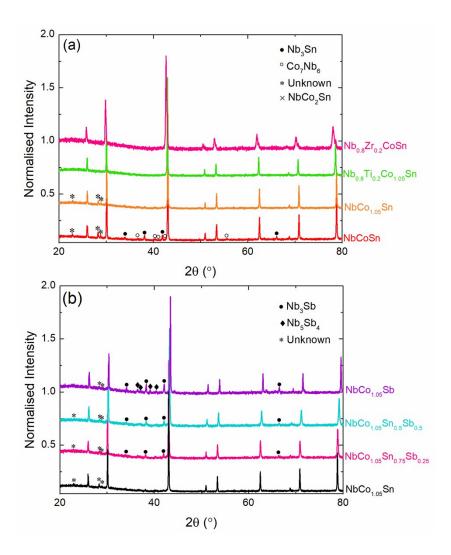
Supplementary information for:

Impact of Nb vacancies and p-type doping of the NbCoSn-NbCoSb half-Heusler thermoelectrics

Daniella A. Ferluccio,^a Ronald I. Smith^b, Jim. Buckman^c and Jan-Willem G. Bos^{a*}

^a Institute of Chemical Sciences and Centre for Advanced Energy Storage and Recovery, School of

Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.


^b ISIS Facility, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK.

^c Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK.

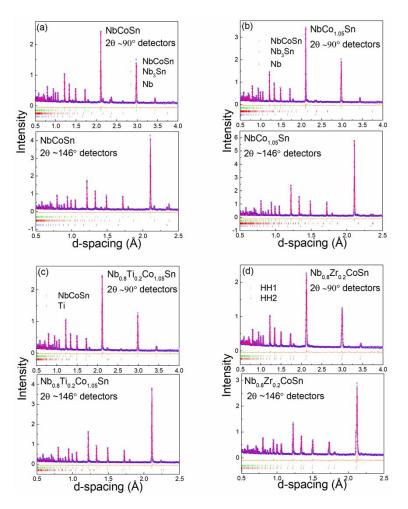

* j.w.g.bos@hw.ac.uk

Table S1: Lattice parameters (Å) from x-ray powder diffraction for all NbCoSn based compositions synthesised using Ta foil.

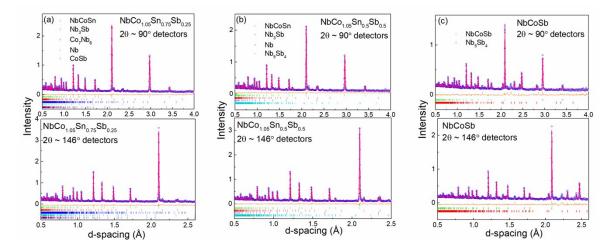

Composition	<i>a</i> (Å)
NbCoSn	5.9500(5)
NbCo _{1.05} Sn	5.9506(4)
Nb _{0.8} Ti _{0.2} Co _{1.05} Sn	5.9660(5)
Nb _{0.8} Zr _{0.2} Co _{1.05} Sn	HH 1 5.9970(2)
	HH 2 5.9605(3)
	HH 3 5.9822(3)
NbCo _{1.05} Sn _{0.75} Sb _{0.25}	5.9438(1)
NbCo _{1.05} Sn _{0.5} Sb _{0.5}	5.9429(1)
NbCoSb	5.9004(1)
NbCo _{1.05} Sb	5.9028(1)

Figure S1: X-ray powder diffraction data for compositions annealed using Ta foil (a) NbCo_{1+y}Sn (y = 0, 0.05), Nb_{0.8}Ti_{0.2}Co_{1.05}Sn, Nb_{0.8}Zr_{0.2}CoSn and (b) NbCo_{1.05}Sn_{1-z}Sb_z ($0 \le z \le 1$), after hot pressing.

Figure S2: Fitted powder neutron diffraction profiles for **(a-b)** NbCo_{1+y}Sn (y = 0, 0.05), **(c)** Nb_{0.8}Ti_{0.2}CoSn and **(d)** Nb_{0.8}Zr_{0.2}CoSn. Blue circles are observed data, red lines are calculated profile, orange lines are difference profiles (obs-calc). Vertical lines indicate Bragg reflection positions (phases indicated in figures).

Figure S3 Fitted powder neutron diffraction profiles for **(a-c)** NbCo_{1.05}Sn_{1-z}Sb_z (z = 0.25, 0.5, 1). Blue circles are observed data, red lines are calculated profile, orange lines are difference profiles (obs-calc). Vertical lines indicate Bragg reflection positions (phases indicated in figures).