Methanol Decomposition Reactions over Boron-Doped Graphene Supported Ru-Pt Catalyst

Jemal Yimer Damte[‡], Shang-lin Lyu[‡], Ermias Girma Leggesse* and Jyh Chiang Jiang*

Department of Chemical Engineering, National Taiwan University of Science and Technology,

43, Keelung Road, Section 4, Taipei 106, Taiwan.

Supporting Information

	C– C (Å)	C– B (Å)	M– M (Å)
Ref 60 (Pt ₂ Ru ₄ /B-C)	1.41-1.47	1.50 - 1.53	2.20 - 3.53
This work (Pt ₂ Ru ₂ /B-C)	1.41 – 1.47	1.51 – 1.55	2.50 - 3.03

Table S1. The geometric parameters of metal clusters adsorbed on boron doped graphene surface.

Table S2. Calculated adsorption energies of metal cluster, per Ru-Pt atom, for 2Ru and 2Pt atoms deposited on pristine graphene and boron-doped graphene surface.

Surface	E _{ads} , eV
RuPt/Graphene	-0.68
RuPt/B-doped graphene	-1.98

Table S3. Calculated adsorption energies (E_{ads} , in eV) and bond distance (bond length, in Å) of methanol molecule adsorbed on Ru–Pt/graphene surface at different sites, top Ru₂, top Ru₁ and top Pt₂.

Species	Sites	E _{ads}	d(O-Ru)	d(O-Pt)	d(C–H)	d(O-H)
CH ₃ OH	Ru2	-0.52	2.19	3.32	1.10	0.98
	Ru1	-0.61	2.19	3.88	1.10	0.98
	Pt2	-0.55	3.47	2.23	1.10	1.00

Cutoff energy	E _{ads} ^a	Cpu time	Kpoints ^b	Eads	Cpu time
		(sec)			(sec)
325	-3.17	1317	441	-3.17	1343
350	-3.17	1343	551	-3.17	816
375	-3.18	1568	661	-3.18	3217
400	-3.17	1583	771	-3.18	2332

Table S4. The Pt adsorption energies on boron-doped graphene surface in different cutoff energy and K-points setting.

^a the Pt adsorption energy is calculated with a 5 x 5 x 1 Monkhorst-Pack k-point

^b the Pt adsorption energy is calculated with a plane wave energy cutoff of 350 eV

Table S5. Calculated adsorption energies (E_{ads} , in eV) and bond distance (bond length, in Å) of methanol molecule adsorbed on Ru–Pt/boron doped graphene surface at different sites, A (Ru₂– Pt₁), B & F (top Ru₁), C (top Ru₂), D (Ru₁–Ru₂), E (Ru₁–Pt₂), and G (top Pt₁)).

Species	Sites	E _{ads}	d(O-Ru)	d(O–Pt)	d(C–H)	d(O-H)
	(A)	-0.84	2.22	3.13	1.10	1.02
	$(B)^{1a}$	-0.80	2.21	3.16	1.10	1.00
	(C)	-0.95	2.18	3.99	1.10	0.98
	(D)	-0.60	2.22	3.57	1.10	0.98
	(E)	-0.65	2.21	3.35	1.10	0.98
CH-OH	(F) ^{2a}	-0.74	2.20	3.34	1.10	0.98
CHI30H	(G)	-0.48	-	3.21	1.10	1.01

^a1 means OH bond points to Pt, and 2 means C-H bond points to Pt

Table S6. Activation energy (\ddagger E) and zero-point energy corrected activation energies (\ddagger E_{ZPE}) of potential energy surface on Ru-Pt/boron doped graphene surface. ('*' indicates the species is adsorbed on the catalyst surface)

Reaction pathways	<i>‡E</i> (eV)	$E_{ZPE}(eV)$
Pathway A		
$\mathrm{CH_3OH*}_{(\mathrm{A})} \!\rightarrow\! [\ \mathrm{CH_3O*\!+H*}]$	0.67	0.61
$\mathrm{CH}_3\mathrm{O}^*\!\rightarrow\![\mathrm{CH}_2\mathrm{O}^*\!+\!2\mathrm{H}^*]$	0.70	0.48
$\mathrm{CH}_{2}\mathrm{O}^{*} \rightarrow [\mathrm{CHO}^{*}\!\!+\!\!3\mathrm{H}^{*}]$	0.36	0.18
$\text{CHO*} \rightarrow [\text{CO*+4H*}]$	2.47	2.39
$\mathrm{CHO}^* \to \mathrm{CHO}^*$	0.91	0.89
$\text{CHO*} \rightarrow [\text{CO*+4H*}]$	0.15	0.08
Pathway B		
$CH_3OH^*_{(C)} \rightarrow CH_3OH^*_{(B)}$	0.42	0.41
$\mathrm{CH_3OH*}_{(\mathrm{B})} \rightarrow [\mathrm{CH_3O*+H*}]$	0.43	0.24
$\mathrm{CH}_3\mathrm{O}^* \to [\mathrm{CH}_2\mathrm{O}^*{+}2\mathrm{H}^*]$	0.55	0.38
$\mathrm{CH}_{2}\mathrm{O}^{*}\!\rightarrow\![\mathrm{CHO}^{*}\!\!+\!\!\mathrm{H}^{*}]$	0.94	0.76
$CH_2O^* \rightarrow CH_2O^*$	1.06	1.03
$\mathrm{CHO}^* \rightarrow [\mathrm{CO}^{*}{+}4\mathrm{H}^*]$	0.15	0.08

Table S7. Desorption energy (E_{des}), barriers ($\ddagger E$) and reaction energies (ΔE) of the rate determining steps of CH₃OH decomposition on different surfaces.

Surfaces	E _{des} (eV)	*E (eV)	$\Delta E (eV)$
Ru-Pt/boron doped graphene	0.84 (Site A), 0.80 (site B), 0.95 (site C)	0.94	-0.08
PtRu (111) ¹	0.70	1.01	-0.18
Pd (100) ²	0.42	1.79	-0.07
Ru (0001) ³	0.28	0.63	-0.02
Ir (111) ⁴	0.34	0.51	-0.15
PtPd ₃ (111) ⁵	0.12	0.95	0.74
Au (111) ⁶	0.17	2.00	1.29

Figure S1. Electron density difference plot (e/Bohr³) for the different methanol adsorption configuration on Ru–Pt/boron doped graphene surface. The blue dash-lines represents the loss of electron and the red solid-lines show electron accumulation. (a) site A, (b) site B, and (c) site C.

Figure S2. Different possible adsorption sites of methanol on Ru–Pt/boron-doped graphene surface, A (Ru₂–Pt₁), B & F (top Ru₁), C (top Ru₂), D (Ru₁–Ru₂), E (Ru₁–Pt₂), and G (top Pt₁)). Atomic spheres: Blue, Pt; green, Ru; gray, C; orange, O; pale yellow B.

Figure S3. Schematic representation of the Initial state (IS), Transition state (TS) and Final state (FS) of the hydrogen recombination reaction $(H + H \rightarrow H_2)$ at different coverage (A) 4H (B) coverage 12H on Ru-Pt/boron-doped graphene surface.

References

1. Zhao, L.; Wang, S.; Ding, Q.; Xu, W.; Sang, P.; Chi, Y.; Lu, X.; Guo, W., The Oxidation of Methanol on Ptru(111): A Periodic Density Functional Theory Investigation. *The Journal of Physical Chemistry C* **2015**, *119*, 20389-20400.

2. Jiang, Z.; Wang, B.; Fang, T., A Theoretical Study on the Complete Dehydrogenation of Methanol on Pd (100) Surface. *Applied Surface Science* **2016**, *364*, 613-619.

3. Zhang, S.-T.; Yan, H.; Wei, M.; Evans, D. G.; Duan, X., Hydrogenation Mechanism of Carbon Dioxide and Carbon Monoxide on Ru(0001) Surface: A Density Functional Theory Study. *RSC Advances* **2014**, *4*, 30241.

4. Wang, H.; He, C.-z.; Huai, L.-y.; Liu, J.-y., Decomposition and Oxidation of Methanol on Ir(111): A First-Principles Study. *The Journal of Physical Chemistry C* **2013**, *117*, 4574-4584.

5. Wang, X.; Chen, L.; Li, B., A Density Functional Theory Study of Methanol Dehydrogenation on the Ptpd3(111) Surface. *International Journal of Hydrogen Energy* **2015**, *40*, 9656-9669.

6. Wang, L.; He, C.; Zhang, W.; Li, Z.; Yang, J., Methanol-Selective Oxidation Pathways on Au Surfaces: A First-Principles Study. *The Journal of Physical Chemistry C* **2014**, *118*, 17511-17520.