Supplementary information for

"Mechanical stability of a nanotube from monolayer black

phosphorus with the [110] direction as tube's circumference or

generatrix"

Zhiqiang Zhao¹, Hang Yin^{1*}, Kun Cai², Wanqi Zhou¹

¹ College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an 271018, China

² Centre for Innovative Structures and Materials, School of Engineering, RMIT University, Melbourne 3001, Australia

* Corresponding author. Email: yinhang8710@163.com

Table S1. Geometry parameters of s-BPNTs with same effective length. All the simulation models are set in periodic boundary conditions.

s-BPNTs	(11, 11)	(13, 13)	(15, 15)	(17, 17)	(19, 19)	(21, 21)
L (nm)	22.014	22.014	22.014	22.014	22.014	22.014
<i>D</i> (nm)	1.922	2.271	2.621	2.970	3.319	3.669
$\alpha = L/D$	11.454	9.693	8.399	7.412	6.633	6.000

Figure S1. The uniaxial compressing stress-strain curves before buckling of s-BPNTs with same effective length and different diameters. The critical stresses are shown.

Figure S2. The axial strain energy versus compressed length of s-BPNTs with same effective length and different diameters. The final descent stage represents for the break of BPNTs.