## **Supplementary Information**

## Ab initio Kinetics of the $HOSO_2 + {}^3O_2 \rightarrow SO_3 + HO_2$ Reaction

Tam V.-T. Mai,<sup>1,2</sup> Minh v. Duong,<sup>1</sup> Hieu T. Nguyen<sup>1</sup> and Lam K. Huynh<sup>3,\*</sup>

<sup>1</sup> Molecular Science and Nano-Materials Lab, Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam.

<sup>2</sup> University of Science, Vietnam National University – HCMC, 227 Nguyen Van Cu, Ward 4, District 5, Ho Chi Minh City, Vietnam.

<sup>3</sup> International University, Vietnam National University – HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam.

\*Corresponding author.

## Contents

| Table S1: The optimized geometries, electronic energies at 0 K ( $E_{elec}^{0 \text{ K}}$ ), zero-point energy (ZPE)                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| corrections and harmonic wavenumbers of the species involved, calculated at W1U level of theory for the title reaction                                                                                                                                                                                                        |
| <b>Table S2:</b> T1 diagnostics for the species involved in HOSO <sub>2</sub> + O <sub>2</sub> reaction computed at CCSD(T)/cc-pVTZ   with the B3LYP/cc-pVTZ+d geometries.   5                                                                                                                                                |
| <b>Table S3:</b> High-pressure rate constants for the $HOSO_2 + O_2$ system calculated at W1U method <sup>[a]</sup> .5                                                                                                                                                                                                        |
| <b>Table S4</b> : Calculated the anharmonic and HIR factors for the addition step (via TS1).   6                                                                                                                                                                                                                              |
| <b>Table S5:</b> Parameters obtained from the modified Arrhenius expression <sup>[a]</sup> of the calculated values for thepressure-dependent rate coefficients over the temperature range of $200 - 1000$ K for $HOSO_2 + O_2 \rightarrow SO_3 + HO_2$ reaction                                                              |
| <b>Table S6:</b> Rate constants and uncertainty for HOSO <sub>2</sub> + O <sub>2</sub> $\rightarrow$ products at <i>T</i> = 200 – 1000 K and <i>P</i> = 10 torr, using the stochastic approach with 10 <sup>8</sup> trials                                                                                                    |
| <b>Table S7:</b> Rate constants and uncertainty for HOSO <sub>4</sub> (adduct) $\rightarrow$ products at $T = 200 - 1000$ K and $P = 10$ torr, using the stochastic approach with 10 <sup>8</sup> trials                                                                                                                      |
| <b>Table S8:</b> Rate constants and uncertainty for post-complex $\rightarrow$ products at $T = 200 - 1000$ K and $P = 10$ torr, using the stochastic approach with $10^8$ trials                                                                                                                                             |
| Table S9: Detailed kinetic submechanism in NASA format for the reaction HOSO2 + O28                                                                                                                                                                                                                                           |
| <b>Figure S1:</b> Hindrance potentials for HOSO <sub>2</sub> (a), HOSO <sub>4</sub> (b), TS1 (c), TS_abs (d) and Post-complex (e) calculated at B3LYP/aug-cc-pVDZ level of theory                                                                                                                                             |
| <b>Figure S2:</b> Calculated rate constants as a function of temperature at $P = 10$ torr for the HOSO <sub>4</sub> $\rightarrow$ products (a) and post-complex $\rightarrow$ products (b) reactions                                                                                                                          |
| <b>Figure S3:</b> Comparison of the calculated rate constants between the deterministic (solid line) and stochastic (dashed line) models as a function of temperature ( $T = 200 - 1000 \text{ K}$ ) at $P = 10$ torr for the HOSO <sub>2</sub> + O <sub>2</sub> $\rightarrow$ SO <sub>3</sub> + HO <sub>2</sub> reaction. 14 |
| References                                                                                                                                                                                                                                                                                                                    |

| Species           |   | Cart         | esian coordinate | e            | $E^{0\mathrm{K}}_{elec}$ | ZPE       | Unscaled vibrational frequencies (cm <sup>-1</sup> ) | [a]                  |
|-------------------|---|--------------|------------------|--------------|--------------------------|-----------|------------------------------------------------------|----------------------|
|                   |   |              | (A)              |              | (Hartree)                | (Hartree) |                                                      |                      |
| HOSO <sub>2</sub> | S | 0.133973000  | 0.069399000      | 0.252505000  | -625.530878              | 0.022084  | <b>281</b> 419 429                                   |                      |
| (C <sub>1</sub> ) | 0 | -1.169888000 | -0.838173000     | -0.109904000 |                          |           | 530 751 1106                                         |                      |
|                   | Η | -1.948695000 | -0.260162000     | -0.113307000 |                          |           | 1114 1318 3744                                       |                      |
|                   | 0 | 1.271870000  | -0.693791000     | -0.194507000 |                          |           | [N/A; N/A; N/A; 538; 787; 1103; N/A; 1312; 34        | 476] <sup>1-3</sup>  |
|                   | 0 | -0.126342000 | 1.425685000      | -0.186435000 |                          |           | (278; 420; 429; 531; 759; 1112; 1147; 1317; 38       | $(65)^4$             |
|                   |   |              |                  |              |                          |           | (284; 418; 428; 526; 745; 1009; 1112; 1309; 37       | 34) <sup>5</sup>     |
|                   |   |              |                  |              |                          |           | (257; 396; 411; 521; 725; 1045; 1129; 1317; 35       | 82) <sup>6,[b]</sup> |
|                   |   |              |                  |              |                          |           | (282; 418; 431; 545; 783; 1103; 1147; 1378; 36       | $00)^{7,[b]}$        |
| $O_2$ (triplet)   | 0 | 0.000000000  | 0.000000000      | 0.602922000  | -150.414422              | 0.003711  | 1629                                                 |                      |
| $(C_{\infty h})$  | 0 | 0.000000000  | 0.000000000      | -0.602922000 |                          |           | $[1580]^8; (1682)^4; (1549)^{6,[b]}$                 |                      |
| HOSO <sub>4</sub> | S | 0.468967000  | -0.038648000     | 0.085706000  | -775.975287              | 0.030035  | <i>101</i> 216 <i>327</i>                            |                      |
| (Adduct)          | 0 | 0.316278000  | 1.188759000      | -0.890097000 |                          |           | 346 387 458                                          |                      |
| (C <sub>1</sub> ) | Η | -0.238908000 | 1.869123000      | -0.475917000 |                          |           | 503 574 656                                          |                      |
|                   | 0 | 0.470797000  | 0.400500000      | 1.435544000  |                          |           | 866 1133 1155                                        |                      |
|                   | 0 | 1.404683000  | -0.935127000     | -0.476815000 |                          |           | 1238 1489 3734                                       |                      |
|                   | 0 | -2.050653000 | 0.009226000      | 0.008578000  |                          |           | (95; 203; 313; 332; 363; 440; 484; 560; 637; 84      | 2;                   |
|                   | 0 | -1.049175000 | -0.819702000     | -0.189132000 |                          |           | $1138; 1157; 1207; 1453; 3730)^4$                    |                      |
|                   |   |              |                  |              |                          |           | (111; 226; 326; 348; 398; 453; 496; 561; 657; 8      | 39;                  |
|                   |   |              |                  |              |                          |           | $1121; 1175; 1211; 1467; 3768)^9$                    |                      |
|                   |   |              |                  |              |                          |           | (99; 216; 315; 343; 372; 447; 495; 563; 655; 83      | 2;                   |
|                   |   |              |                  |              |                          |           | 1070; 1153; 1204; 1458; 3567) <sup>6,[b]</sup>       |                      |
| Post-complex      | S | 0.674689000  | 0.094604000      | 0.000004000  | -775.969172              | 0.030106  | <b>93</b> 181 222                                    |                      |
| $(C_s)$           | 0 | 0.016931000  | 1.384678000      | 0.000075000  |                          |           | 260 418 526                                          |                      |
|                   | Η | -1.635843000 | 0.901172000      | 0.000038000  |                          |           | 534 547 <b>742</b>                                   |                      |
|                   | 0 | 1.144782000  | -0.426639000     | 1.238356000  |                          |           | 1051 1228 1329                                       |                      |
|                   | 0 | 1.144766000  | -0.426508000     | -1.238409000 |                          |           | 1420 1546 3116                                       |                      |
|                   | 0 | -2.179831000 | 0.054889000      | 0.000001000  |                          |           | (93; 179; 213; 256; 284; 411; 511; 520; 532; 74      | 3;                   |
|                   | 0 | -1.271545000 | -0.888274000     | -0.000036000 |                          |           | $1023; 1229; 1300; 1389; 1548; 3100)^4$              |                      |
|                   |   |              |                  |              |                          |           | (123; 273; 318; 474; 504; 605; 640; 715; 1025;       | 1041;                |
|                   |   |              |                  |              |                          |           | $1077; 1265; 1402; 1885; >10^4)^9$                   |                      |
| TS1               | S | -0.555294000 | -0.118998000     | 0.094636000  | -775.945567              | 0.027206  | -167 <b>57</b> 87                                    |                      |

**Table S1**: The optimized geometries, electronic energies at 0 K ( $E_{elec}^{0 \text{ K}}$ ), zero-point energy (ZPE) corrections and harmonic wavenumbers of the species involved, calculated at W1U level of theory for the title reaction.

3

| Species            |   | Cart         | esian coordinate | 9            | $E^{0 \text{ K}}_{elec}$ | ZPE<br>(Hartroo) | Unso       | caled vibration                                     | nal frequencies (cm <sup>-1</sup> ) <sup>[a]</sup> |  |  |
|--------------------|---|--------------|------------------|--------------|--------------------------|------------------|------------|-----------------------------------------------------|----------------------------------------------------|--|--|
|                    |   |              | (A)              |              | (Hartree)                | (Ital tiee)      |            |                                                     |                                                    |  |  |
| $(C_1)$            | 0 | -1.085630000 | 0.791732000      | -1.133674000 |                          |                  | 106        | 293                                                 | 352                                                |  |  |
|                    | Н | -1.496348000 | 1.590801000      | -0.768235000 |                          |                  | 431        | 441                                                 | 542                                                |  |  |
|                    | 0 | -0.378227000 | -1.439734000     | -0.433834000 |                          |                  | 769        | 1122                                                | 1141                                               |  |  |
|                    | 0 | -1.347839000 | 0.177850000      | 1.262221000  |                          |                  | 1375       | 1482                                                | 3744                                               |  |  |
|                    | 0 | 2.456312000  | -0.151613000     | -0.102914000 |                          |                  |            |                                                     |                                                    |  |  |
|                    | 0 | 1.653014000  | 0.660911000      | 0.314957000  |                          |                  |            |                                                     |                                                    |  |  |
| TS2                | S | -0.579924000 | 0.000006000      | 0.055979000  | -775.964104              | 0.026611         | -920       | 133                                                 | 276                                                |  |  |
| $(C_s)$            | 0 | 0.159804000  | 0.000116000      | 1.359026000  |                          |                  | 296        | 485                                                 | 511                                                |  |  |
|                    | Η | 1.298440000  | 0.000090000      | 0.955386000  |                          |                  | 598        | 624                                                 | 762                                                |  |  |
|                    | 0 | -1.154483000 | 1.242731000      | -0.325045000 |                          |                  | 1055       | 1075                                                | 1237                                               |  |  |
|                    | 0 | -1.154506000 | -1.242775000     | -0.324827000 |                          |                  | 1303       | 1437                                                | 1888                                               |  |  |
|                    | 0 | 2.045870000  | 0.000000000      | -0.023483000 |                          |                  | (-913; 132 | 2; 264; 284; 47                                     | 2; 497; 595; 609; 751; 1032;                       |  |  |
|                    | 0 | 1.100857000  | -0.000095000     | -0.917052000 |                          |                  | 1077; 124  | 0; 1277; 1404;                                      | $(1884)^4$                                         |  |  |
|                    |   |              |                  |              |                          |                  | (-438; 114 | (-438; 114; 272; 340; 474; 480; 540; 621; 879; 949; |                                                    |  |  |
|                    |   |              |                  |              |                          |                  | 1220; 133  | 0; 1426; 1480;                                      | $(2248)^9$                                         |  |  |
| TS_abs             | S | 1.178164000  | 0.052368000      | 0.183279000  | -775.896478              | 0.022470         | -1706      | 27                                                  | 38                                                 |  |  |
| $(C_1)$            | 0 | -0.132024000 | -0.409442000     | 0.768446000  |                          |                  | 109        | 196                                                 | 466                                                |  |  |
|                    | Н | -1.168108000 | -0.442278000     | 0.175216000  |                          |                  | 480        | 544                                                 | 578                                                |  |  |
|                    | 0 | 1.941549000  | -0.962197000     | -0.493415000 |                          |                  | 1017       | 1097                                                | 1206                                               |  |  |
|                    | 0 | 1.201437000  | 1.424937000      | -0.248755000 |                          |                  | 1335       | 1343                                                | 1427                                               |  |  |
|                    | 0 | -2.986827000 | 0.419253000      | -0.033647000 |                          |                  |            |                                                     |                                                    |  |  |
|                    | 0 | -2.234451000 | -0.522002000     | -0.381089000 |                          |                  |            |                                                     |                                                    |  |  |
| SO <sub>3</sub>    | 0 | 0.000000000  | 1.426051000      | -0.000118000 | -624.947038              | 0.012378         | 495        | 527                                                 | 527                                                |  |  |
| (D <sub>3h</sub> ) | 0 | 1.234997000  | -0.713026000     | -0.000118000 |                          |                  | 1076       | 1404                                                | 1404                                               |  |  |
|                    | S | 0.000000000  | 0.000000000      | 0.000177000  |                          |                  | [498; 530] | 530; 1065; 13                                       | <sup>391;1391]<sup>10</sup></sup>                  |  |  |
|                    | 0 | -1.234997000 | -0.713026000     | -0.000118000 |                          |                  | (477; 512) | 512; 1050; 13                                       | $374; 1375)^4$                                     |  |  |
| HO <sub>2</sub>    | 0 | 0.055357000  | 0.718609000      | 0.000000000  | -151.001595              | 0.014117         | 1161       | 1432                                                | 3603                                               |  |  |
| $(C_1)$            | 0 | 0.055357000  | -0.610398000     | 0.000000000  |                          |                  | [1098; 13  | 92; 3436] <sup>11</sup> : (1                        | $160; 1432; 3602)^4$                               |  |  |
|                    | Н | -0.885712000 | -0.865689000     | 0.000000000  |                          |                  |            |                                                     | · · · ·                                            |  |  |

<sup>[a]</sup> Frequency modes in *itali*c and **bold** corresponds to the internal rotations. Frequencies in square parentheses ("[]") are taken from experimental studies. <sup>[b]</sup> Anharmonic values.

| No. | Species                    | T1 diagnostics |
|-----|----------------------------|----------------|
| 1   | HOSO <sub>2</sub>          | 0.02006765     |
| 2   | $^{3}O_{2}$                | 0.01550560     |
| 3   | $SO_3$                     | 0.01807977     |
| 4   | $HO_2$                     | 0.02843197     |
| 5   | HOSO <sub>4</sub> (adduct) | 0.02387292     |
| 6   | Post-complex               | 0.02523502     |
| 7   | TS1                        | 0.02756714     |
| 8   | TS2                        | 0.02179923     |
| 9   | TS_abs                     | 0.04249207     |

**Table S2:** T1 diagnostics for the species involved in  $HOSO_2 + O_2$  reaction computed at CCSD(T)/cc-pVTZ with the B3LYP/cc-pVTZ+d geometries.

The T1 values of less than 0.02 and 0.04 (in some cases  $< 0.045^{12}$  may be acceptable) for closed shell and radical species, respectively, suggest the non-dynamic correlation energy is small<sup>13-17</sup>, thus there is no need to consider high-order methods for the title system.

| Table | <b>S3:</b> High- | pressure rate constants | for the $HOSO_2 +$ | O <sub>2</sub> system cal | culated at W1U method <sup>[a]</sup> . |
|-------|------------------|-------------------------|--------------------|---------------------------|----------------------------------------|
|-------|------------------|-------------------------|--------------------|---------------------------|----------------------------------------|

| No   | Reaction                                     | k(T) =                 | $A \times T^n \times exp$ | k(T) at 298 K <sup>[b]</sup> |                                               |
|------|----------------------------------------------|------------------------|---------------------------|------------------------------|-----------------------------------------------|
| 110. | Reaction                                     | A <sup>[b]</sup>       | n                         | $E_a/R$ (K)                  | $K(I)$ at 290 K $\sim$                        |
| 1    | $HOSO_2 + O_2 \rightarrow HOSO_4$            | 5.62×10 <sup>-18</sup> | 2.05                      | $5.17 \times 10^{1}$         | $5.5 \times 10^{-13} (4.1 \times 10^{-13})^4$ |
| 1    | (reverse reaction)                           | $4.29 \times 10^{14}$  | 0.20                      | $8.71 \times 10^{3}$         | $2.7 \times 10^2 (3.1 \times 10^1)^4$         |
| 2    | $HOSO_4 \rightarrow post-complex$            | 6.87×10 <sup>11</sup>  | -0.08                     | $2.05 \times 10^{3}$         | $4.7 \times 10^{8}$                           |
|      | (reverse reaction)                           | $2.08 \times 10^{12}$  | -0.03                     | $3.31 \times 10^{3}$         | $5.7 \times 10^{11}$                          |
| 2    | $SO_3 + HO_2 \rightarrow post-complex^{[c]}$ | 5.62×10 <sup>-18</sup> | 2.05                      | $5.17 \times 10^{1}$         | 5.5×10 <sup>-13</sup>                         |
| 5    | (reverse reaction)                           | $1.83 \times 10^{17}$  | -0.65                     | $6.34 \times 10^{3}$         | $2.5 \times 10^{6}$                           |

<sup>[a]</sup> Rate constants are valid for 200–1000 K. <sup>[b]</sup> Units of [s<sup>-1</sup>] for first-order reactions and [cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>] for second-order reactions. This work calculated at composite W1U method including Eckart tunneling, HIR treatments and symmetry reactions. <sup>[c]</sup> Assume equal to HOSO<sub>2</sub> + O<sub>2</sub>  $\rightarrow$  HOSO<sub>4</sub> reaction (see main text).

r 1

| T (K) | anharm/harm | hir factor |
|-------|-------------|------------|
| 200   | 1.1         | 18.6       |
| 250   | 1.1         | 17.9       |
| 298   | 1.1         | 17.5       |
| 300   | 1.1         | 17.5       |
| 350   | 1.1         | 17.1       |
| 400   | 1.1         | 16.7       |
| 450   | 1.1         | 16.4       |
| 500   | 1.1         | 16.1       |
| 550   | 1.1         | 15.8       |
| 600   | 1.1         | 15.5       |
| 650   | 1.1         | 15.2       |
| 700   | 1.1         | 15.0       |
| 750   | 1.1         | 14.7       |
| 800   | 1.1         | 14.5       |
| 850   | 1.1         | 14.3       |
| 900   | 1.1         | 14.0       |
| 950   | 1.1         | 13.8       |
| 1000  | 1.1         | 13.6       |

Table S4: Calculated the anharmonic and HIR factors for the addition step (via TS1).

**Table S5:** Parameters obtained from the modified Arrhenius expression<sup>[a]</sup> of the calculated values for the pressure-dependent rate coefficients over the temperature range of 200 - 1000 K for HOSO<sub>2</sub> + O<sub>2</sub>  $\rightarrow$  SO<sub>3</sub> + HO<sub>2</sub> reaction.

| P (torr) | $A (cm^3/molecule/s)$ | п     | <i>Ea/R</i> (K)      |
|----------|-----------------------|-------|----------------------|
| 10       | 2.59×10 <sup>-7</sup> | -1.75 | $9.72 \times 10^2$   |
| 50       | 5.51×10 <sup>-7</sup> | -1.85 | $1.03 \times 10^{3}$ |
| 100      | 1.17×10 <sup>-6</sup> | -1.95 | $1.09 \times 10^{3}$ |
| 300      | 6.77×10 <sup>-6</sup> | -2.18 | $1.25 \times 10^{3}$ |
| 760      | 5.82×10 <sup>-5</sup> | -2.47 | $1.44 \times 10^{3}$ |

| P [torr] | T [K] | HOSO <sub>4</sub> (adduct)<br>[cm <sup>3</sup> /molecule/s] | unc. (%) | Post-complex<br>[cm <sup>3</sup> /molecule/s] | unc. (%) | $SO_3 + HO_2$<br>[cm <sup>3</sup> /molecule/s] | unc. (%) |
|----------|-------|-------------------------------------------------------------|----------|-----------------------------------------------|----------|------------------------------------------------|----------|
| 1.00E+01 | 200   | 3.90E-15                                                    | 1.7E-04  | 3.41E-18                                      | 2.0E-01  | 1.97E-13                                       | 3.4E-06  |
| 1.00E+01 | 300   | 1.24E-15                                                    | 1.4E-03  | 2.65E-18                                      | 6.3E-01  | 4.23E-13                                       | 4.0E-06  |
| 1.00E+01 | 400   | 3.84E-16                                                    | 8.2E-03  | 2.46E-18                                      | 1.3E+00  | 6.18E-13                                       | 5.1E-06  |
| 1.00E+01 | 500   | 5.08E-17                                                    | 1.0E-01  | 7.66E-19                                      | 6.7E+00  | 7.27E-13                                       | 7.0E-06  |
| 1.00E+01 | 600   | 3.02E-18                                                    | 2.5E+00  | 7.55E-20                                      | 1.0E+02  | 7.49E-13                                       | 1.0E-05  |
| 1.00E+01 | 700   | 2.10E-19                                                    | 5.0E+01  | 1.05E-19                                      | 1.0E+02  | 7.14E-13                                       | 1.5E-05  |
| 1.00E+01 | 800   | 1.39E-19                                                    | 1.0E+02  | 1.39E-19                                      | 1.0E+02  | 6.52E-13                                       | 2.1E-05  |
| 1.00E+01 | 900   | 1.78E-19                                                    | 1.0E+02  | 1.78E-19                                      | 1.0E+02  | 5.82E-13                                       | 3.1E-05  |
| 1.00E+01 | 1000  | 2.23E-19                                                    | 1.0E+02  | 2.22E-19                                      | 1.0E+02  | 5.17E-13                                       | 4.3E-05  |

**Table S6:** Rate constants and uncertainty for  $HOSO_2 + O_2 \rightarrow products$  at T = 200 - 1000 K and P = 10 torr, using the stochastic approach with  $10^8$  trials.

**Table S7:** Rate constants and uncertainty for HOSO<sub>4</sub> (adduct)  $\rightarrow$  products at T = 200 - 1000 K and P = 10 torr, using the stochastic approach with  $10^8$  trials.

| P [torr] | T [K] | $\frac{\text{HOSO}_2 + \text{O}_2}{[1/s]}$ | unc. (%) | Post-complex [1/s] | unc. (%) | SO <sub>3</sub> +<br>HO <sub>2</sub> [1/s] | unc. (%) |
|----------|-------|--------------------------------------------|----------|--------------------|----------|--------------------------------------------|----------|
| 1.00E+01 | 200   | 1.32E-02                                   | 1.0E+02  | 4.64E+01           | 2.8E-02  | 1.32E-02                                   | 1.0E+02  |
| 1.00E+01 | 300   | 1.30E-01                                   | 1.0E+02  | 1.53E+02           | 8.5E-02  | 1.30E-01                                   | 1.0E+02  |
| 1.00E+01 | 400   | 3.75E-01                                   | 1.0E+02  | 1.67E+02           | 2.2E-01  | 3.75E-01                                   | 1.0E+02  |
| 1.00E+01 | 500   | 8.14E-01                                   | 1.0E+02  | 1.03E+02           | 7.9E-01  | 8.14E-01                                   | 1.0E+02  |
| 1.00E+01 | 600   | 8.28E+00                                   | 2.0E+01  | 5.79E+01           | 2.9E+00  | 2.48E+01                                   | 6.7E+00  |
| 1.00E+01 | 700   | 1.95E+02                                   | 1.8E+00  | 3.13E+01           | 1.1E+01  | 1.19E+03                                   | 2.9E-01  |
| 1.00E+01 | 800   | 5.75E+03                                   | 1.4E-01  | 5.74E+01           | 1.4E+01  | 2.00E+04                                   | 4.1E-02  |
| 1.00E+01 | 900   | 1.10E+05                                   | 2.2E-02  | 9.78E+01           | 2.5E+01  | 3.13E+05                                   | 7.8E-03  |
| 1.00E+01 | 1000  | 1.56E+06                                   | 4.6E-03  | 7.18E+01           | 1.0E+02  | 3.94E+06                                   | 2.1E-03  |

| P [torr] | T [K] | HOSO <sub>4</sub><br>[1/s] | unc. (%) | $\frac{HOSO_2 + O_2}{[1/s]}$ | unc. (%) | $\frac{\text{SO}_3 + \text{HO}_2}{[1/s]}$ | unc. (%) |
|----------|-------|----------------------------|----------|------------------------------|----------|-------------------------------------------|----------|
| 1.00E+01 | 200   | 2.41E+06                   | 2.4E-05  | 5.87E-01                     | 1.0E+02  | 5.87E-01                                  | 1.0E+02  |
| 1.00E+01 | 300   | 6.85E+05                   | 1.7E-04  | 1.16E+00                     | 1.0E+02  | 1.16E+00                                  | 1.0E+02  |
| 1.00E+01 | 400   | 1.90E+05                   | 1.5E-03  | 2.84E+00                     | 1.0E+02  | 2.84E+00                                  | 1.0E+02  |
| 1.00E+01 | 500   | 6.17E+04                   | 1.0E-02  | 1.24E+01                     | 5.0E+01  | 5.60E+01                                  | 1.1E+01  |
| 1.00E+01 | 600   | 1.59E+04                   | 6.9E-02  | 4.41E+02                     | 2.5E+00  | 2.87E+03                                  | 3.8E-01  |
| 1.00E+01 | 700   | 6.37E+03                   | 2.8E-01  | 1.05E+04                     | 1.7E-01  | 5.98E+04                                  | 3.0E-02  |
| 1.00E+01 | 800   | 4.39E+03                   | 6.4E-01  | 1.29E+05                     | 2.2E-02  | 6.39E+05                                  | 4.4E-03  |
| 1.00E+01 | 900   | 2.24E+03                   | 2.0E+00  | 1.03E+06                     | 4.2E-03  | 4.32E+06                                  | 1.0E-03  |
| 1.00E+01 | 1000  | 1.95E+03                   | 3.4E+00  | 5.44E+06                     | 1.2E-03  | 2.07E+07                                  | 3.3E-04  |

**Table S8:** Rate constants and uncertainty for post-complex  $\rightarrow$  products at T = 200 - 1000 K and P = 10 torr, using the stochastic approach with  $10^8$  trials.

**Table S9:** Detailed kinetic submechanism in NASA format for the reaction  $HOSO_2 + O_2$ .

| THERMO         |      |            |      |      |       |       |       |       |       |       |      |      |       |       |       |         |    |
|----------------|------|------------|------|------|-------|-------|-------|-------|-------|-------|------|------|-------|-------|-------|---------|----|
| 300.000 2500   | .000 | 150        | 0.00 | 0    |       |       |       |       |       |       |      |      |       |       |       |         |    |
| 02             | 0 2  | 2          |      | G    | 300   | .000  | 2500  | 0.000 | ) 150 | 0.00  | 0    | 1    |       |       |       |         |    |
| 8.43297122E+00 | 00-1 | .6239      | 9520 | 9E-  | 0021  | .323  | 52834 | 4E-(  | )05-4 | .716  | 950  | 80E- | -0096 | 5.208 | 3322  | 4E-013  | 2  |
| -2.89317271E+0 | 03-  | 3.735      | 649  | 80E  | +001  | 1.10  | 4482  | 00E   | +000  | -7.8  | 540  | 5683 | E-00  | 5-1.0 | 5590  | 985E-00 | 73 |
| 2.92270364E-01 | 0-1  | 3245       | 326  | 0E-( | 013-2 | 2.622 | 27367 | 0E+   | 0022  | .327  | 752  | 48E  | +000  |       |       | 4       |    |
| hoso2          | S    | 10         | 3H   | 1    | G     | 300   | .000  | 250   | 0.000 | ) 15( | 0.0  | 00   | 1     |       |       |         |    |
| -2.84981961E+0 | 017  | .1178      | 8920 | )1E- | 002-  | 5.92  | 05157 | 70E-  | 0052  | .146  | 142  | 57E  | -008- | 2.863 | 36313 | 37E-012 | 2  |
| -1.93945190E+0 | 0021 | .8333      | 3761 | 4E-  | +0022 | 2.733 | 36711 | 6E+   | -0003 | 8.154 | 1378 | 393E | -003  | -8.04 | 4592  | 76E-006 | 3  |
| 7.57453027E-00 | 9-2. | 3693       | 211  | 6E-( | 012-1 | 1.125 | 5891  | 8E+   | 0041  | .440  | 256  | 96E  | +001  |       |       | 4       |    |
| hoso4          | S    | 10         | 5H   | 1    | G     | 300   | .000  | 250   | 0.000 | ) 15( | 0.0  | 00   | 1     |       |       |         |    |
| -6.16289220E+0 | 0001 | .0894      | 4983 | 6E-  | 002-  | 2.25  | 54539 | 91E-  | 008-2 | 2.962 | 251′ | 786E | E-009 | 7.813 | 31010 | 05E-013 | 2  |
| -7.18873210E+0 | )038 | .4958      | 8141 | 4E-  | +0012 | 2.644 | 45360 | 0E+   | -0001 | .174  | 1317 | 01E  | -002  | -2.38 | 4310  | 53E-005 | 3  |
| 1.88976548E-00 | 8-5. | 1769       | 341′ | 7E-( | 012-1 | 1.323 | 89643 | 1E+   | 0042  | .897  | 796  | 28E  | +001  |       |       | 4       |    |
| post-complex   |      | <b>S</b> 1 | 10   | 5H   | 1     | G     | 300.0 | 00    | 2500  | .000  | 150  | 0.00 | )0    | 1     |       |         |    |
| -1.07463499E+0 | 022  | .1718      | 8301 | 0E-  | 001-  | 1.52  | 31601 | 2E-   | 0044  | .564  | 315  | 44E  | -008- | 4.916 | 5472  | 56E-012 | 2  |
| 3.17394791E+00 | 046. | 4007       | 4745 | 5E+  | 0022  | .931  | 38928 | 3E+(  | 0008. | .964( | 0042 | 25E- | 003-  | 1.669 | 7608  | 89E-005 | 3  |
| 1.27897972E-00 | 8-3. | 3795       | 093  | 6E-( | 012-1 | 1.288 | 84506 | 7E+   | 0042  | .753  | 588  | 25E  | +001  |       |       | 4       |    |

S 10 5H 1 G 300.000 2500.000 1500.000 ts1 1 3.72902375E+002-7.04332098E-0014.97689114E-004-1.54432881E-0071.78162849E-011 2 -1.63829172E+005-2.02775883E+0038.43764394E+000-2.61464079E-0025.59805842E-005 3 -4.93910583E-0081.51874685E-011-1.19514957E+0042.56413807E+000 4 S 10 5H 1 G 300.000 2500.000 1500.000 1 ts<sub>2</sub> -2.61134980E+0025.62006312E-001-4.40597720E-0041.51419450E-007-1.92538876E-011 2 8.64209255E+0041.47223045E+0035.20507508E+000-6.51301433E-0031.49999148E-005 3 -1.34163479E-0084.08760422E-012-1.29544932E+0042.05068066E+001 4 O 3S 1 G 300.000 2500.000 1500.000 so3 1 1.47773814E+001-3.29997788E-0023.08079685E-005-1.21912159E-0081.74697537E-012 2 -1.50793980E+004-5.35975855E+0012.92825781E+000-3.60009684E-0037.33046251E-006 3 -5.66441893E-0091.45348661E-012-1.17851718E+0048.39774883E+0004 ho2 O 2H 1 G 300.000 2500.000 1500.000 1 -5.36509260E+0011.13758079E-001-8.72004719E-0052.95346987E-008-3.72937254E-012 2 2.14211245E+0043.08587767E+0021.31176086E+0002.15680413E-003-4.33902987E-006 3 3.55108897E-009-1.00740206E-0126.98533618E+0016.60865839E+000 4 TS abs S 10 5H 1 G 300.000 2500.000 1500.000 1 9.23383030E+002-1.83936636E+0001.36733226E-003-4.47534479E-0075.44602023E-011 2 -3.72375242E+005-5.04349677E+0035.16461620E+000-8.09374819E-0032.08285083E-005 3 -2.01957457E-0086.66815816E-012-8.17617183E+0031.96097575E+001 4 post complex S 10 5H 1 G 300.000 2500.000 1500.000 1 -1.07463498E + 0022.17183010E - 001 - 1.52316011E - 0044.56431546E - 008 - 4.91647256E - 0122 3.17262491E+0046.40074741E+0022.93138928E+0008.96400425E-003-1.66976089E-005 3 1.27897972E-008-3.37950936E-012-1.28977367E+0042.75358825E+001 4







**Figure S1:** Hindrance potentials for  $HOSO_2$  (a),  $HOSO_4$  (b), TS1 (c),  $TS_abs$  (d) and Postcomplex (e) calculated at B3LYP/aug-cc-pVDZ level of theory.



**Figure S2:** Calculated rate constants as a function of temperature at P = 10 torr for the HOSO<sub>4</sub>  $\rightarrow$  products (a) and post-complex  $\rightarrow$  products (b) reactions.



**Figure S3:** Comparison of the calculated rate constants between the deterministic (solid line) and stochastic (dashed line) models as a function of temperature (T = 200 - 1000 K) at P = 10 torr for the HOSO<sub>2</sub> + O<sub>2</sub>  $\rightarrow$  SO<sub>3</sub> + HO<sub>2</sub> reaction.

## References

- 1. S. Nagase, S. Hashimoto and H. Akimoto, J. Phys. Chem., 1988, 92, 641-644.
- 2. S. Hashimoto, G. Iioue and H. Akimoto, Chem. Phys. Lett., 1984, 107, 198-202.
- 3. M. Wierzejewska and A. Olbert-Majkut, J. Phys. Chem. A, 2003, 107, 10944-10952.
- 4. N. Gonzalez-Garcia and M. Olzmann, Phys. Chem. Chem. Phys., 2010, 12, 12290-12298.
- 5. H. Somnitz, *Phys. Chem. Chem. Phys.*, 2004, **6**, 3844.
- 6. N. González-García, W. Klopper and M. Olzmann, *Chem. Phys. Lett.*, 2009, **470**, 59-62.
- 7. W. Klopper, D. P. Tew, N. Gonzalez-Garcia and M. Olzmann, *J. Chem. Phys.*, 2008, **129**, 114308.
- 8. K. P. Huber and G. Herzberg, *Molecular Spectra and Molecular Structure*. *IV. Constants of Diatomic Molecules*, Van Nostrand Reinhold Co, 1979.
- 9. D. Majumdar, G.-S. Kim, J. Kim, K. S. Oh, J. Y. Lee, K. S. Kim, W. Y. Choi, S.-H. Lee, M.-H. Kang and B. J. Mhin, *J. Chem. Phys.*, 2000, **112**, 723-730.
- 10. T. Shimanouchi, Tables of Molecular Vibrational Frequencies, Consolidated Volume 1, NSRDS NBS-39.
- 11. M. E. Jacox, J. Phys. Chem. Ref. Data, 1994, Monograph 3
- 12. I. M. Alecu and D. G. Truhlar, J. Phys. Chem. A, 2011, 115, 2811-2829.
- 13. T. J. Lee and P. R. Taylor, Int. J. Quantum Chem., 1989, **36**, 199-207.
- 14. D. Jayatilaka and T. J. Lee, *J Chem Phys*, 1993, **98**, 9734-9747.
- 15. J. C. Rienstra-Kiracofe, W. D. Allen and H. F. Schaefer, J. Phys. Chem. A, 2000, 104, 9823-9840.
- 16. M. A. Ali, J. A. Sonk and J. R. Barker, J. Phys. Chem. A, 2016, 120, 7060-7070.
- 17. M. Monge-Palacios and H. Rafatijo, *Phys Chem Chem Phys*, 2017, **19**, 2175-2185.