SUPPORTING INFORMATION

Energy vs. density on paths toward exact density functionals

Kasper P. Kepp*

Technical University of Denmark, DTU Chemistry, Building 206, 2800 Kgs. Lyngby, DK – Denmark.

*Phone: +045 45 25 24 09. E-mail: kpj@kemi.dtu.dk

Figure S1. PBE/aug-cc-p ω CV5Z density near the nucleus of B⁺, compared to the best exponential fit, showing the effect of Gaussian basis functions on the density.

Figure S2. The six density difference plots of the four studied density functionals, B⁺ ion. (aug-cc-pωCV5Z)

Figure S3. The six density difference plots of the four studied density functionals, B³⁺ ion. (aug-cc-pωCV5Z)

Figure S4. The six density difference plots of the four studied density functionals, C²⁺ ion. (aug-cc-pωCV5Z)

Figure S5. The six density difference plots of the four studied density functionals, C⁴⁺ ion. (aug-cc-pωCV5Z)

Figure S6. The six density difference plots of the four studied density functionals, N³⁺ ion. (aug-cc-pωCV5Z)

Figure S7. The six density difference plots of the four studied density functionals, N⁵⁺ ion. (aug-cc-pωCV5Z)

Figure S8. The six density difference plots of the four studied density functionals, O⁴⁺ ion. (aug-cc-pωCV5Z)

Figure S9. The six density difference plots of the four studied density functionals, O⁶⁺ ion. (aug-cc-pωCV5Z)

Figure S10. The six density difference plots of the four studied density functionals, F⁵⁺ ion. (aug-cc-pωCV5Z)

Figure S11. The six density difference plots of the four studied density functionals, F⁷⁺ ion. (aug-cc-pωCV5Z)

Figure S12. The six density difference plots of the four studied density functionals, Ne⁶⁺ ion. (aug-cc-pωCV5Z)

Figure S13. The six density difference plots of the four studied density functionals, Ne⁸⁺ ion. (aug-cc-pωCV5Z)

Figure S14. Average $\Delta E_D' = E(\rho)-E(\rho')$ in kJ/mol for two test sets: (A) Top: B3LYP, PBE, SVWN, and M06; (B) bottom: PBE, M06-2X, PBE0, and SVWN, using the other three functional's densities as trial densities. The functionals represent very different densities in terms of previous ranking for these systems^[1]. The computed energies are the experimentally known double ionization potentials discussed in the main text. Despite the energies being many eVs, these changes in densities affect the computed energies by only < 1.5 kJ/mol, i.e. the density variations manifest below chemical accuracy; such systems are referred to as "practically normal".

C2+1C4+ N3+1N5+ 04+106+ 55+1F1+ NE6+1NE8+

0.0

8×183×

Figure S15. Difference between the ionization potentials computed by a given density functional using its own density and other densities: A) M06; B) B3LYP; C) PBE; D) SVWN.

Table S1. Computed B3LYP and PBE energies (a.u.) of ions similar to those studied previously^[1,2] (aug-cc-p ω CV5Z basis set). The IP values refer to the energy of removing both 2s electrons in kJ/mol. Experimental data from NIST^[3].

	B3LYP			PBE			Experiment
	X ⁽ⁿ⁾⁺	X ⁽ⁿ⁺²⁾⁺	IP	X ⁽ⁿ⁾⁺	X ⁽ⁿ⁺²⁾⁺	IP	(NIST)
B ⁺ /B ³⁺	-24.3298	-22.0132	6082.30	-24.2934	-21.9820	6068.65	6086.9
C ²⁺ /C ⁴⁺	-36.5024	-32.3792	10825.34	-36.4610	-32.3442	10808.71	10843.3
N ³⁺ /N ⁵⁺	-51.1753	-44.7448	16883.32	-51.1303	-44.7063	16866.41	16920.3
O ⁴⁺ /O ⁶⁺	-68.3483	-59.1104	24253.99	-68.3006	-59.0686	24238.68	24316.4
F ⁵⁺ /F ⁷⁺	-88.0210	-75.4758	32937.47	-87.9713	-75.4308	32925.06	33032.3
Ne ⁶⁺ /Ne ⁸⁺	-110.1936	-93.8411	42933.43	-110.1422	-93.7930	42924.89	43068.7

Table S2. Computed SVWN and M06 energies (a.u.) of ions similar to those studied previously^[1,2] (aug-cc-p ω CV5Z basis set). The IP values refer to the energy of removing both 2s electrons in kJ/mol.

	SVWN			M06		
	X ⁽ⁿ⁾⁺	X ⁽ⁿ⁺²⁾⁺	IP	X ⁽ⁿ⁾⁺	X ⁽ⁿ⁺²⁾⁺	IP
B ⁺ /B ³⁺	-24.0382	-21.7432	6025.72	-24.3340	-22.0492	5998.70
C ²⁺ /C ⁴⁺	-36.1300	-32.0395	10739.70	-36.5087	-32.4265	10717.78
N ³⁺ /N ⁵⁺	-50.7211	-44.3342	16768.75	-51.1843	-44.8034	16753.11
O ⁴⁺ /O ⁶⁺	-67.8112	-58.6282	24109.87	-68.3598	-59.1802	24101.01
F ⁵⁺ /F ⁷⁺	-87.4003	-74.9213	32763.70	-88.0353	-75.5567	32762.41
Ne ⁶⁺ /Ne ⁸⁺	-109.4886	-93.2137	42729.73	-110.2103	-93.9331	42735.76

Table S3. Computed PBE, B3LYP, and M06 energies (a.u.) using the optimized SVWN densities of ions similar to those studied previously^[1,2] (aug-cc-pωCV5Z basis set). The IP values refer to the energy of removing both 2s electrons in kJ/mol.

	PBE(SVWN)	PBE(SVWN)			B3LYP(SVWN)			M06(SVWN)			
	X ⁽ⁿ⁾⁺	X ⁽ⁿ⁺²⁾⁺	IP	X ⁽ⁿ⁾⁺	X ⁽ⁿ⁺²⁾⁺	IP	X ⁽ⁿ⁾⁺	X ⁽ⁿ⁺²⁾⁺	IP		
B ⁺ /B ³⁺	-24.2920	-21.9808	6067.93	-24.3283	-22.0119	6081.62	-24.3312	-22.0469	5997.38		
C ²⁺ /C ⁴⁺	-36.4595	-32.3430	10807.96	-36.5008	-32.3779	10824.60	-36.5061	-32.4243	10716.77		
N ³⁺ /N ⁵⁺	-51.1288	-44.7050	16865.60	-51.1737	-44.7435	16882.52	-51.1818	-44.8012	16752.17		
O ⁴⁺ /O ⁶⁺	-68.2990	-59.0673	24237.79	-68.3466	-59.1091	24253.13	-68.3574	-59.1780	24100.35		
F ⁵⁺ /F ⁷⁺	-87.9696	-75.4295	32924.12	-88.0193	-75.4744	32936.57	-88.0327	-75.5546	32761.41		
Ne ⁶⁺ /Ne ⁸⁺	-110.1405	-93.7917	42923.91	-110.1919	-93.8397	42932.50	-110.2078	-93.9309	42734.88		

Table S4. Computed SVWN, B3LYP, and M06 energies (a.u.) using the optimized PBE densities of ions similar to those studied previously^[1,2] (aug-cc-p ω CV5Z basis set). The IP values refer to the energy of removing both 2s electrons in kJ/mol.

	SVWN(PBE)	SVWN(PBE)			B3LYP(PBE)			M06(PBE)			
	X ⁽ⁿ⁾⁺	X ⁽ⁿ⁺²⁾⁺	IP	X ⁽ⁿ⁾⁺	X ⁽ⁿ⁺²⁾⁺	IP	X ⁽ⁿ⁾⁺	X ⁽ⁿ⁺²⁾⁺	IP		
B ⁺ /B ³⁺	-24.0368	-21.7420	6025.00	-24.3296	-22.0131	6081.93	-24.3328	-22.0482	5998.04		
C ²⁺ /C ⁴⁺	-36.1285	-32.0383	10738.95	-36.5022	-32.3791	10825.06	-36.5079	-32.4257	10718.01		
N ³⁺ /N ⁵⁺	-50.7195	-44.3330	16767.94	-51.1751	-44.7447	16883.10	-51.1837	-44.8026	16753.56		
O ⁴⁺ /O ⁶⁺	-67.8096	-58.6269	24108.96	-68.3481	-59.1103	24253.80	-68.3592	-59.1794	24101.56		
F ⁵⁺ /F ⁷⁺	-87.3987	-74.9200	32762.74	-88.0209	-75.4757	32937.34	-88.0346	-75.5560	32762.65		
Ne ⁶⁺ /Ne ⁸⁺	-109.4869	-93.2124	42728.76	-110.1934	-93.8410	42933.31	-110.2096	-93.9323	42736.07		

Table S5. Computed SVWN, PBE, and M06 energies (a.u.) using the optimized B3LYP densities of ions similar to those studied previously^[1,2] (aug-cc-p ω CV5Z basis set). The IP values refer to the energy of removing both 2s electrons in kJ/mol.

	SVWN(B3L)	′P)		PBE (B3LYP)			M06(B3LYP)		
	X ⁽ⁿ⁾⁺	X ⁽ⁿ⁺²⁾⁺	IP	Х ⁽ⁿ⁾⁺	X ⁽ⁿ⁺²⁾⁺	IP	X ⁽ⁿ⁾⁺	X ⁽ⁿ⁺²⁾⁺	IP
B ⁺ /B ³⁺	-24.0367	-21.7419	6025.04	-24.2932	-21.9819	6068.30	-24.3328	-22.0484	5997.75
C ²⁺ /C ⁴⁺	-36.1285	-32.0382	10738.96	-36.4608	-32.3441	10808.44	-36.5078	-32.4259	10717.12
N ³⁺ /N ⁵⁺	-50.7195	-44.3329	16767.96	-51.1302	-44.7062	16866.19	-51.1835	-44.8028	16752.43
O ⁴⁺ /O ⁶⁺	-67.8095	-58.6269	24109.00	-68.3004	-59.0685	24238.51	-68.3590	-59.1797	24100.40
F ⁵⁺ /F ⁷⁺	-87.3986	-74.9199	32762.80	-87.9711	-75.4307	32924.92	-88.0344	-75.5563	32761.50
Ne ⁶⁺ /Ne ⁸⁺	-109.4868	-93.2123	42728.80	-110.1421	-93.7929	42924.78	-110.2095	-93.9326	42734.98

Table S6. Computed B3LYP, PBE, and SVWN energies (a.u.) using the optimized M06 densities of ions similar to those studied previously^[1,2] (aug-cc-p ω CV5Z basis set). The IP values refer to the energy of removing both 2s electrons in kJ/mol.

	B3LYP(M06)		PBE(M06)			SVWN(M06)			
	X ⁽ⁿ⁾⁺	X ⁽ⁿ⁺²⁾⁺	IP	X ⁽ⁿ⁾⁺	X ⁽ⁿ⁺²⁾⁺	IP	X ⁽ⁿ⁾⁺	X ⁽ⁿ⁺²⁾⁺	IP	
B ⁺ /B ³⁺	-24.3285	-22.0124	6081.01	-24.2919	-21.9810	6067.34	-24.0350	-21.7409	6023.15	
C ²⁺ /C ⁴⁺	-36.5013	-32.3786	10824.23	-36.4601	-32.3433	10808.53	-36.1273	-32.0373	10738.20	
N ³⁺ /N ⁵⁺	-51.1744	-44.7443	16882.25	-51.1296	-44.7055	16866.45	-50.7183	-44.3321	16766.96	
O ⁴⁺ /O ⁶⁺	-68.3473	-59.1099	24252.88	-68.2998	-59.0678	24238.59	-67.8082	-58.6261	24107.62	
F ⁵⁺ /F ⁷⁺	-88.0202	-75.4753	32936.38	-87.9705	-75.4300	32924.93	-87.3978	-74.9191	32762.76	
Ne ⁶⁺ /Ne ⁸⁺	-110.1925	-93.8407	42931.63	-110.1413	-93.7923	42924.41	-109.4860	-93.2115	42728.68	

ATOM	Exp. IP/eV	STATE X	STATE X⁺
Н	13.60	² S ¹ /2	
He	24.59	${}^{1}S_{0}$	² S _{1/2}
Li	5.39	² S ¹ /2	¹ S ₀
Ве	9.32	¹ S ₀	² S _{1/2}
В	8.30	² P° ¹ /2	¹ S ₀
С	11.26	³ P ₀	² P° _{1/2}
Ν	14.53	⁴ S° ³ /2	³ P ₀
0	13.62	³ P ₂	⁴ S° _{3/2}
F	17.42	² P° ³ /2	³ P ₂
Ne	21.56	${}^{1}S_{0}$	² P° _{3/2}

Table S7. Experimental ionization potentials and ground states of atoms and ions from NIST.

Table S8. Electronic energies for atoms and ions (in a.u.) and ionization potentials (IP) for atoms (in kJ/mol), computed using CCSD(T) and CCSD, aug-cc-pV5Z basis set.

ATOM		CCSD(T)			CCSD	
	х	X+	IP	x	X+	IP
Н	-0.5000	0.0000	1312.74	-0.5000	0.0000	1312.74
He	-2.9032	-1.9999	2371.50	-2.9032	-1.9999	2371.50
Li	-7.4600	-7.2622	519.15	-7.4599	-7.2622	519.07
Ве	-14.6463	-14.3042	898.23	-14.6458	-14.3042	896.82
В	-24.6298	-24.3255	799.01	-24.6279	-24.3249	795.64
C	-37.8195	-37.4060	1085.58	-37.8167	-37.4043	1082.81
N	-54.5627	-54.0284	1402.58	-54.5594	-54.0262	1399.85
0	-75.0372	-74.5384	1309.40	-75.0329	-74.5362	1304.06
F	-99.7000	-99.0607	1678.73	-99.6946	-99.0577	1672.20
Ne	-128.9004	-128.1074	2082.13	-128.8939	-128.1037	2074.66

Table S9. Electronic energies for atoms and ions (in a.u.) and ionization potentials (IP) for atoms kJ/mol), computed using B3LYP and PBE functionals, aug-cc-pV5Z basis set.

ATOM		B3LYP			PBE	
-	X	Х+	IP	х	Х+	IP
Н	-0.4991	0.0000	1310.26	-0.5000	0.0000	1312.71
He	-2.9081	-1.9949	2397.62	-2.8929	-1.9937	2360.75
Li	-7.4825	-7.2786	535.44	-7.4620	-7.2567	539.00
Ве	-14.6593	-14.3276	871.05	-14.6298	-14.2992	868.05
В	-24.6479	-24.3297	835.39	-24.6120	-24.2932	837.04
C	-37.8402	-37.4192	1105.43	-37.7985	-37.3743	1113.55
N	-54.5818	-54.0464	1405.79	-54.5354	-53.9943	1420.76
0	-75.0712	-74.5556	1353.91	-75.0146	-74.4978	1356.73
F	-99.7421	-99.0947	1699.95	-99.6756	-99.0269	1703.26
Ne	-128.9422	-128.1483	2084.27	-128.8658	-128.0700	2089.26

Table S10. Electronic energies for atoms and ions (in a.u.) and ionization potentials (IP) for atoms kJ/mol), computed using SVWN and M06 functionals, aug-cc-pV5Z basis set.

ATOM		SVWN			M06	
	Х	X+	IP	Х	X+	IP
Н	-0.4787	0.0000	1256.74	-0.5002	0.0000	1313.25
He	-2.8348	-1.9417	2344.93	-2.9102	-1.9996	2390.90
Li	-7.3439	-7.1427	528.11	-7.4859	-7.2908	512.06
Ве	-14.4471	-14.1154	870.93	-14.6609	-14.3325	862.23
В	-24.3560	-24.0381	834.49	-24.6425	-24.3325	813.85
C	-37.4701	-37.0404	1128.22	-37.8305	-37.4145	1092.34
N	-54.1365	-53.5852	1447.62	-54.5789	-54.0373	1421.95
0	-74.5310	-74.0163	1351.17	-75.0651	-74.5576	1332.58
F	-99.1144	-98.4545	1732.62	-99.7399	-99.0950	1693.17
Ne	-128.2329	-127.4176	2140.53	-128.9512	-128.1549	2090.93

ATOM	PBE(SVWN)			B3LYP(SVWN)			M06(SVWN)	
	x	X+	IP	x	X+	IP	х	X+	IP
Н	-0.4996	0.0000	1311.6	-0.4986	0.0000	1309.1	-0.4995	0.0000	1311.4
He	-2.8922	-1.9932	2360.3	-2.9072	-1.9943	2396.7	-2.9084	-1.9988	2388.3
Li	-7.4609	-7.2558	538.6	-7.4813	-7.2776	535.0	-7.4830	-7.2894	508.3
Ве	-14.6286	-14.2980	868.1	-14.6579	-14.3262	871.0	-14.6586	-14.3313	859.2
В	-24.6102	-24.2920	835.6	-24.6459	-24.3282	834.1	-24.6385	-24.3308	807.8
C	-37.7964	-37.3725	1112.9	-37.8381	-37.4171	1105.3	-37.8272	-37.4123	1089.3
N	-54.5333	-53.9922	1420.6	-54.5798	-54.0441	1406.3	-54.5727	-54.0344	1413.3
0	-75.0121	-74.4956	1356.1	-75.0687	-74.5534	1353.0	-75.0615	-74.5552	1329.3
F	-99.6732	-99.0246	1703.0	-99.7395	-99.0923	1699.4	-99.7341	-99.0906	1689.5
Ne	-128.8639	-128.0680	2089.8	-128.9400	-128.1460	2084.7	-128.9479	-128.1512	2091.5

Table S11. Electronic energies for atoms and ions (in a.u.) and ionization potentials (IP) for atoms kJ/mol), computed using SWN densities but other functionals, aug-cc-pV5Z basis set.

Table S12. Electronic energies for atoms and ions (in a.u.) and ionization potentials (IP) for atoms (in kJ/mol), computed using PBE densities but other functionals, aug-cc-pV5Z basis set.

ATOM	SVWN(PBE)			B3LYP(PBE)			M06(PBE)		
	х	X+	IP	х	X+	IP	х	X+	IP
Н	-0.4782	0.0000	1255.5	-0.4990	0.0000	1310.2	-0.4999	0.0000	1312.5
He	-2.8341	-1.9411	2344.5	-2.9080	-1.9948	2397.6	-2.9093	-1.9994	2388.9
Li	-7.3428	-7.1418	527.7	-7.4824	-7.2786	535.2	-7.4844	-7.2906	509.1
Ве	-14.4459	-14.1142	870.9	-14.6592	-14.3274	870.9	-14.6604	-14.3327	860.2
В	-24.3541	-24.0367	833.5	-24.6475	-24.3295	834.9	-24.6400	-24.3327	806.6
С	-37.4681	-37.0385	1127.8	-37.8398	-37.4189	1105.2	-37.8286	-37.4140	1088.4
N	-54.1344	-53.5831	1447.6	-54.5815	-54.0460	1405.8	-54.5750	-54.0361	1414.8
0	-74.5285	-74.0142	1350.3	-75.0709	-74.5552	1353.9	-75.0637	-74.5568	1330.9
F	-99.1121	-98.4522	1732.6	-99.7420	-99.0946	1699.7	-99.7367	-99.0933	1689.2
Ne	-128.2308	-127.4153	2141.0	-128.9423	-128.1484	2084.2	-128.9514	-128.1540	2093.8

ATOM	SVWN (B3L	SVWN (B3LYP)			PBE (B3LYP)			M06 (B3LYP)		
	x	X+	IP	x	X+	IP	х	X+	IP	
Н	-0.4782	0.0000	1255.5	-0.5000	0.0000	1312.6	-0.4991	0.0000	1310.3	
He	-2.8339	-1.9411	2344.1	-2.8928	-1.9937	2360.7	-2.9095	-1.9995	2389.3	
Li	-7.3427	-7.1417	527.7	-7.4619	-7.2567	538.7	-7.4843	-7.2907	508.3	
Ве	-14.4457	-14.1140	870.8	-14.6297	-14.2991	868.0	-14.6604	-14.3325	860.8	
В	-24.3540	-24.0366	833.3	-24.6117	-24.2932	836.2	-24.6404	-24.3327	807.9	
C	-37.4679	-37.0383	1128.0	-37.7980	-37.3741	1113.1	-37.8290	-37.4142	1089.0	
N	-54.1345	-53.5829	1448.2	-54.5350	-53.9939	1420.6	-54.5754	-54.0364	1415.2	
0	-74.5284	-74.0143	1350.0	-75.0143	-74.4975	1356.8	-75.0644	-74.5573	1331.3	
F	-99.1119	-98.4521	1732.3	-99.6754	-99.0268	1702.9	-99.7373	-99.0937	1689.7	
Ne	-128.2306	-127.4152	2140.9	-128.8660	-128.0703	2089.3	-128.9522	-128.1543	2094.9	

Table S13. Electronic energies for atoms and ions (in a.u.) and ionization potentials (IP) for atoms (in kJ/mol), computed using B3LYP densities but other functionals, aug-cc-pV5Z basis set.

Table S14. Electronic energies for atoms and ions (in a.u.) and ionization potentials (IP) for atoms (in kJ/mol), computed using M06 densities but other functionals, aug-cc-pV5Z basis set.

ATOM	B3LYP(M06)			PBE(M06)			SVWN(M06)		
	х	X+	IP	x	X+	IP	x	X+	IP
Н	-0.4988	0.0000	1309.5	-0.4996	0.0000	1311.7	-0.4778	0.0000	1254.6
He	-2.9074	-1.9947	2396.1	-2.8920	-1.9935	2358.8	-2.8330	-1.9408	2342.4
Li	-7.4813	-7.2784	532.7	-7.4610	-7.2563	537.3	-7.3412	-7.1412	525.0
Ве	-14.6589	-14.3267	872.1	-14.6294	-14.2986	868.5	-14.4449	-14.1133	870.4
В	-24.6469	-24.3293	833.8	-24.6107	-24.2930	834.0	-24.3529	-24.0359	832.5
C	-37.8389	-37.4184	1104.2	-37.7968	-37.3733	1111.7	-37.4669	-37.0375	1127.2
N	-54.5808	-54.0454	1405.8	-54.5339	-53.9930	1420.1	-54.1328	-53.5821	1445.9
0	-75.0698	-74.5550	1351.6	-75.0125	-74.4952	1358.2	-74.5268	-74.0124	1350.5
F	-99.7409	-99.0937	1699.1	-99.6737	-99.0255	1701.9	-99.1101	-98.4505	1731.8
Ne	-128.9409	-128.1474	2083.3	-128.8639	-128.0689	2087.3	-128.2273	-127.4136	2136.4

Table S15. Electronic energies for atoms and ions (in a.u.) and ionization potentials (IP) for atoms (in kJ/mol), computed using B3LYP and PBE functionals, def-TZVP basis set.

ATOM		B3LYP			PBE	
	Х	X+	IP	x	X+	IP
Н	-0.4988	0.0000	1309.51	-0.4996	0.0000	1311.74
He	-2.9059	-1.9933	2396.12	-2.8906	-1.9921	2358.97
Li	-7.4824	-7.2785	535.32	-7.4619	-7.2566	538.98
Ве	-14.6581	-14.3264	870.86	-14.6283	-14.2977	867.93
В	-24.6463	-24.3283	834.93	-24.6101	-24.2915	836.54
C	-37.8382	-37.4173	1104.84	-37.7960	-37.3722	1112.73
N	-54.5790	-54.0435	1405.88	-54.5322	-53.9912	1420.35
0	-75.0669	-74.5523	1351.01	-75.0097	-74.4943	1353.03
F	-99.7363	-99.0898	1697.35	-99.6691	-99.0218	1699.64
Ne	-0.4988	0.0000	1309.51	-0.4996	0.0000	1311.74

Table S16. Electronic energies for atoms and ions (in a.u.) and ionization potentials (IP) for atoms (in kJ/mol), computed using SVWN and M06 functionals, def-TZVP basis set.

ATOM		SVWN			M06	
	х	X+	IP	x	X+	IP
Н	-0.4783	0.0000	1255.90	-0.4999	0.0000	1312.41
He	-2.8326	-1.9402	2342.98	-2.9082	-1.9990	2386.98
Li	-7.3438	-7.1427	527.88	-7.4861	-7.2911	512.08
Ве	-14.4457	-14.1142	870.31	-14.6596	-14.3316	861.19
В	-24.3539	-24.0365	833.54	-24.6407	-24.3314	812.16
С	-37.4674	-37.0381	1127.15	-37.8279	-37.4123	1091.05
N	-54.1329	-53.5817	1446.99	-54.5765	-54.0342	1423.70
0	-74.5256	-74.0124	1347.36	-75.0612	-74.5552	1328.50
F	-99.1074	-98.4488	1729.30	-99.7345	-99.0911	1689.47
Ne	-128.2241	-127.4090	2140.11	-128.9457	-128.1492	2091.12

	aug-cc-pV	5Z			def-TZVP			
	B3LYP	PBE	SVWN	M06	B3LYP	PBE	SVWN	M06
Н	1.81	-0.64	55.34	-1.18	2.57	0.33	56.18	-0.34
He	-25.25	11.62	27.43	-18.54	-23.75	13.39	29.38	-14.62
Li	-15.21	-18.77	-7.88	8.17	-15.09	-18.75	-7.65	8.15
Ве	28.46	31.46	28.58	37.28	28.65	31.58	29.20	38.33
В	-34.73	-36.38	-33.84	-13.20	-34.28	-35.89	-32.89	-11.51
С	-18.96	-27.08	-41.74	-5.87	-18.37	-26.26	-40.68	-4.58
N	-3.44	-18.41	-45.27	-19.59	-3.53	-17.99	-44.64	-21.34
0	-39.94	-42.76	-37.20	-18.61	-37.04	-39.07	-33.40	-14.54
F	-18.88	-22.18	-51.55	-12.10	-16.28	-18.57	-48.22	-8.40
Ne	-3.58	-8.56	-59.83	-10.23	-4.26	-8.14	-59.41	-10.42

Table S17. Errors in computed ionization potentials (in kJ/mol) with two basis sets as specified.

Table S18. Average basis set sensitivity, calculated as the difference in absolute errors in IPs computed with augcc-pV5Z and def-TZVP. Units of kJ/mol.

	B3LYP	PBE	SVWN	M06
Н	0.75	0.97	0.84	0.84
He	1.50	1.77	1.95	3.92
Li	0.12	0.02	0.23	0.02
Ве	0.19	0.12	0.62	1.05
В	0.46	0.50	0.95	1.69
C	0.59	0.82	1.07	1.29
N	0.09	0.41	0.63	1.75
0	2.90	3.69	3.81	4.08
F	2.60	3.61	3.33	3.70
Ne	0.69	0.42	0.42	0.19
Average	0.99	1.23	1.38	1.85

Table S19. Computed electronic energies of the water molecule and water cation (in units of a.u.), and the ionization potential in units of kJ/mol, aug-cc-pV5Z basis set.

E(B3LYP),	E(B3LYP),	IP(B3LYP)	E(PBE),	E(PBE),	IP(PBE)
H ₂ O	H_2O^+	kJ/mol	H ₂ O	H_2O^+	kJ/mol
-76.4369	-75.9746	1213.83	-76.3884	-75.9235	1220.53
E(SVWN),	E(SVWN),	IP(SVWN)	E(M06),	E(M06),	IP(M06)
H ₂ O	H_2O^+	kJ/mol	H ₂ O	H_2O^+	kJ/mol
-75.9134	-75.4354	1255.16	-76.4342	-75.9700	1218.76

Table S20. Computed electronic energies of the water molecule and water cation (in units of a.u.), and the ionization potential in units of kJ/mol, aug-cc-pV5Z basis set, for PBE, B3LYP, and M06 using SVWN densities as trial densities.

PBE(SVWN)			B3LYP(SVWN)			M06(SVWN)		
E _{el} H ₂ O	$E_{el} H_2O^+$	IP	E _{el} H ₂ O	$E_{el} H_2O^+$	IP	E _{el} H ₂ O	$E_{el} H_2O^+$	IP
		kJ/mol			kJ/mol			kJ/mol
-76.3861	-75.9209	1221.3	-76.4344	-75.97194	1214.08	-76.4297	-75.9667	1215.82

Table S21. Computed electronic energies of the water molecule and water cation (in units of a.u.), and the ionization potential in units of kJ/mol, aug-cc-pV5Z basis set, for SVWN, B3LYP, and M06 using PBE densities as trial densities.

SVWN(PBE)			B3LYP(PBE)			M06(PBE)		
E _{el} H ₂ O	$E_{el} H_2O^+$	IP	E _{el} H ₂ O	$E_{el} H_2 O^+$	IP	E _{el} H ₂ O	$E_{el} H_2O^+$	IP
		kJ/mol			kJ/mol			kJ/mol
-75.9111	-75.4328	1255.87	-76.4368	-75.9743	1214.14	-76.4325	-75.9685	1218.28

Table S22. Computed electronic energies of the water molecule and water cation (in units of a.u.), and the ionization potential in units of kJ/mol, aug-cc-pV5Z basis set, for SVWN, PBE, and M06 using B3LYP densities as trial densities.

SVWN(B3LYP)			PBE(B3LYP)			M06(B3LYP)		
Eel H2O	$E_{el} H_2O^+$	IP	E _{el} H ₂ O	$E_{el} H_2O^+$	IP	Eel H2O	$E_{el} H_2O^+$	IP
		kJ/mol			kJ/mol			kJ/mol
-75.9110	-75.4328	1255.39	-76.3884	-75.9234	1220.87	-76.4327	-75.9688	1217.98

Table S23. Computed electronic energies of the water molecule and water cation (in units of a.u.), and the ionization potential in units of kJ/mol, aug-cc-pV5Z basis set, for B3LYP, PBE, and SVWN using M06 densities as trial densities.

B3LYP(M06)			PBE(M06)			SVWN(M06)		
E _{el} H ₂ O	$E_{el} H_2O^+$	IP	E _{el} H ₂ O	$E_{el} H_2O^+$	IP	E _{el} H ₂ O	$E_{el} H_2O^+$	IP
		kJ/mol			kJ/mol			kJ/mol
-76.4343	-75.9726	1212.13	-76.3858	-75.9214	1219.28	-75.9081	-75.4314	1251.70

Table S24. Computed zero point energies from TPSSh/def2-TZVPP geometry optimization and numerically computed frequencies.

	ZPE (a.u.)	ZPE (kJ/mol)
NaCl	0.0007976	2.09
N2	0.0053607	14.07
HF	0.0090684	23.81
CO	0.0048478	12.73
02	0.0035435	9.30

Table S25. Computed bond dissociation energies (aug-cc-pV5Z basis, in kJ/mol), corrected for enthalpy and ZPE. Experimental values from the 2014 CRC Handbook of Chemistry and Physics^[4].

	CCSD(T)	CCSD	B3LYP	PBE	SVWN	M06	EXP.
NaCl	423.8	414.5	383.2	392.0	431.9	427.5	412.1
N ₂	937.5	895.8	939.5	1005.9	1103.2	920.5	944.9
HF	569.0	559.6	558.1	571.1	655.3	566.1	569.7
СО	1075.1	1040.5	1052.3	1113.3	1237.8	1073.9	1076.6
02	493.2	457.3	506.3	593.4	722.5	497.0	498.5
MAE	5.3	27.8	15.6	42.8	129.8	9.5	

Table S26. Computed electronic energies and D_e (not corrected for ZPE) of diatomic molecules, aug-cc-pV5Z basis set. B3LYP, PBE, and CCSD(T).

	B3LYP		PBE		CCSD(T)	
	Energy (a.u.)	BDE (kJ/mol)	Energy (a.u.)	BDE(kJ/mol)	Energy (a.u.)	BDE(kJ/mol)
NaCl	-622.5210	385.3	-622.2917	394.1	-621.9901	425.9
N ₂	-109.5268	953.6	-109.4593	1019.9	-109.4878	951.6
HF	-100.4628	581.9	-100.4022	595.0	-100.4258	592.8
CO	-113.3171	1065.0	-113.2419	1126.0	-113.2710	1087.9
02	-150.3389	515.6	-150.2587	602.7	-150.2657	502.5

Table S27. Computed electronic energies and D_e (not corrected for ZPE) of diatomic molecules, aug-cc-pV5Z basis set. SVWN, M06, and CCSD.

	SVWN		M06		CCSD	
	Energy (a.u.)	BDE (kJ/mol)	Energy (a.u.)	BDE(kJ/mol)	Energy (a.u.)	BDE(kJ/mol)
NaCl	-620.2719	434.0	-622.5693	429.6	-621.9756	416.6
N ₂	-108.6986	1117.3	-109.5137	934.6	-109.4654	909.9
HF	-99.8518	679.1	-100.4647	589.9	-100.4168	583.4
CO	-112.4774	1250.6	-113.3095	1086.6	-113.2507	1053.2
02	-149.3407	731.8	-150.3231	506.3	-150.2434	466.6

	PBE		B3LYP		M06	
	Energy (a.u.)	BDE (kJ/mol)	Energy (a.u.)	BDE (kJ/mol)	Energy (a.u.)	BDE (kJ/mol)
NaCl	-622.2895	393.93	-622.5178	384.67	-622.5684	423.78
N ₂	-109.4551	1019.71	-109.5224	952.40	-109.5077	937.13
HF	-100.3998	596.26	-100.4603	583.57	-100.4572	583.90
CO	-113.2379	1126.90	-113.3124	1064.49	-113.3026	1086.40
O ₂	-150.2542	603.22	-150.3334	514.07	-150.3150	507.08

Table S28. Electronic energies of diatomic molecules for PBE, B3LYP, and M06 computed using SVWN densities.

Table S29. Electronic energies of diatomic molecules for SVWN, B3LYP, and M06 computed using PBE densities.

	SVWN		B3LYP		M06	
	Energy (a.u.)	BDE (kJ/mol)	Energy (a.u.)	BDE (kJ/mol)	Energy (a.u.)	BDE (kJ/mol)
NaCl	-620.2691	433.84	-622.5204	384.68	-622.5733	426.80
N ₂	-108.6946	1117.53	-109.5261	953.15	-109.5114	936.49
HF	-99.8495	680.83	-100.4626	582.07	-100.4601	583.89
CO	-112.4735	1251.77	-113.3162	1064.20	-113.3068	1088.80
02	-149.3362	732.59	-150.3378	514.02	-150.3196	507.31

Table S30. Electronic energy	gies of diatomic molecules	s for SVWN. PBE. a	and M06 computed u	sing B3LYP densities.
Table 0001 Electronic cherg	bies of anatonine molecules	,	ina moo compatea a	Sing Dorn achisters

	SVWN		PBE		M06	
	Energy (a.u.)	BDE (kJ/mol)	Energy (a.u.)	BDE (kJ/mol)	Energy (a.u.)	BDE (kJ/mol)
NaCl	-620.2685	433.49	-622.2914	393.61	-622.5748	428.61
N ₂	-108.6942	1116.27	-109.4585	1019.22	-109.5110	932.53
HF	-99.8494	681.07	-100.4019	595.00	-100.4607	583.46
CO	-112.4727	1250.34	-113.2410	1125.26	-113.3073	1087.14
O ₂	-149.3354	730.82	-150.2578	601.46	-150.3195	503.52

Table S31. Electronic energies of diatomic molecules for SVWN, B3LYP, and PBE computed using M06 densities.

	SVWN		B3LYP		PBE	
	Energy (a.u.)	BDE (kJ/mol)	Energy (a.u.)	BDE (kJ/mol)	Energy (a.u.)	BDE (kJ/mol)
NaCl	-620.2624	430.49	-622.5178	385.65	-622.2875	392.85
N ₂	-108.6922	1119.87	-109.5237	950.28	-109.4565	1019.77
HF	-99.8463	678.79	-100.4607	580.43	-100.3995	593.85
CO	-112.4694	1248.81	-113.3137	1063.01	-113.2380	1125.30
O ₂	-149.3333	734.22	-150.3357	514.36	-150.2558	605.50

Table S32. Computed Co-C bond dissociation energies (kJ/mol) of 5'-deoxyadenosylcobalamin (def2-TZVPP basis, not corrected for zero-point energies).

	E(B3LYP)	E(PBE)	E(SVWN)	E(M06)
Рвзгль	65.9	123.1	199.2	121.1
Ррве	69.5	119.8	200.8	117.0
ρ _{svwn}	67.3	120.6	200.0	119.0
ρ _{м06}	68.2	117.1	198.1	102.4
SENSITIVITY (MAD from native)	2.4	3.9	1.2	8.3

References

- [1] M. G. Medvedev, I. S. Bushmarinov, J. Sun, J. P. Perdew, K. A. Lyssenko, *Science (80-.).* **2017**, 355, 49–52.
- [2] K. P. Kepp, *Science (80-.).* **2017**, *356*, 496–497.
- [3] **2017**.
- [4] W. M. Haynes, *CRC Handbook of Chemistry and Physics*, CRC Press, **2014**.