Supporting Information

A negative feedback loop based on proton-driven in situ formation of plasmonic molybdenum oxide nanosheets

Wei Huang,^a Yan Zhou,^b Yuequan Deng^a and Yi He^{*b}

a School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China.

b School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, P. R. China.

Fig. S1. AFM image and height profile of the MoO₃ nanosheets (scale bar, 500 nm).

Fig. S2. AFM image of the plasmonic MoO₃ nanosheets (scale bar, 250 nm).

Fig. S3. XRD patterns of (a) MoO_3 nanosheets, (b) MoO_{3-x} nanosheets and the standard card of β -MoO₃.

Fig. S4. UV-vis absorption of the mixture of GSH and MoO_3 nanosheets in the (a) absence and (b) presence of 10 μ M Cu²⁺.

Fig. S5. UV-vis absorption of the mixture of GSH and MoO_3 nanosheets at a concentration of 1.35 mM in the presence of Cu^{2+} with different concentrations.

Fig. S6. UV-vis absorption of the mixture of GSH and MoO_3 nanosheets at a concentration of 1.8 mM in the presence of Cu^{2+} with different concentrations.