Supporting Information

Hydrogenation Properties of Lithium and Sodium Hydride - closo-borate,

 $[B_{10}H_{10}]^{2-}$ and $[B_{12}H_{12}]^{2-}$, Composites

Steffen R. H. Jensen,^a Mark Paskevicius,^a Bjarne R. S. Hansen,^a Anders S. Jakobsen,^a

Kasper T. Møller,^a James L. White,^c Mark D. Allendorf,^c Vitalie Stavila,^{c*} Jørgen Skibsted,^b and

Torben R. Jensen^{a*}

^a Center for Materials Crystallography, Interdisciplinary Nanoscience Center (iNANO) and

Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark

^b Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus

University Langelandsgade 140, 8000 Aarhus C, Denmark

^c Chemistry, Combustion, and Materials Center, Sandia National Laboratories, Livermore, California 94551, United States

* Corresponding authors Torben R. Jensen (trj@chem.au.dk) and Vitalie Stavila (vnstavi@sandia.gov).

1	20 / °	14.16	14.58	15.18	15.51	16.52	16.84	19.24	19.36
	<i>d</i> / Å	6.25	6.07	5.83	5.71	5.36	5.26	4.61	4.58
	Int / %	62	49	64	34	64	100	27	27

Table S1. Observed PXD reflections for the unidentified compound 1 ($\lambda = 1.54056$ Å).

Table S2. Observed PXD reflections for the unidentified compound **2** ($\lambda = 1.54056$ Å).

2	20 / °	5.37	6.15	6.57	13.93	15.34	15.93
	<i>d</i> / Å	16.44	14.37	13.45	6.35	5.77	5.56
	Int / %	100	60	49	25	46	31

Table S3. Observed reflections of the unidentified compounds 3 and 4 ($\lambda = 1.54056$ Å).

3	20 / °	12.28	13.63	14.11	14.41	18.39	18.99	22.49	26.42
	<i>d</i> / Å	7.20	6.49	6.27	6.14	4.82	4.67	3.95	3.37
	Int / %	26	19	28	62	47	100	14	26
4	20 / °	11.98	13.98	14.63	18.47	21.93	28.21	30.69	
	<i>d /</i> Å	7.38	6.33	6.05	4.80	4.05	3.16	2.91	
	Int / %	45	67	37	100	31	33	43	

BORATES	RATES TYPES OF δ(¹¹ B) MULTIPLICITY B		$J_{ m BH}$	B ATOM CHARGE	REFERENCE	
CLOSO- BORATES		-			-	
$[B_6H_6]^{2-}$	1	-13.6	Doublet	122	-0.11	1
$[{\bf B}_7{\bf H}_7]^{2-}$	2 (5:2 ratio)	-0.2 -22.6	Doublet Doublet	119	-0.11	2
[B ₈ H ₈] ²⁻	3 (1:2:1 ratio)	9.5 -3.6 -22.2	Doublet Doublet Doublet	n/a	n/a	3
[B ₉ H ₉] ²⁻	2 (1:2 ratio)	-2.9 -20.5	Doublet Doublet	135 120	-0.10 -0.01	4
$[\mathbf{B}_{10}\mathbf{H}_{10}]^{2}$	2 (1:4 ratio)	0.89 -30.85	Doublet Doublet	141 124	-0.08 -0.03	5
[B ₁₀ H ₁₁] ⁻	3 (1:5:4 ratio)	26.1 -21.5 -24.8	Doublet Doublet Doublet	? ? ?	n/a	6
$[\mathbf{B}_{11}\mathbf{H}_{11}]^{2}$	1	-16.95	Doublet	130	n/a	7
$[\mathbf{B}_{12}\mathbf{H}_{12}]^{2}$	1	-15.63	Doublet	124	-0.02	8
<i>NIDO-</i> BORATES						
[B ₅ H ₈] ⁻	2 (4:1 ratio)	-13.6 -53.1	n/a	164 175	n/a	9
[B ₉ H ₁₂] ⁻	6 (3:2:1:2:1)	-10.47 -14.74 -16.24 -35.00 -52.74	Doublet Doublet Doublet Doublet Doublet	137 175 148 153	n/a	10
[B ₁₀ H ₁₃]⁻	4 (2:1:5:2)	6.8 2.5 -5.0 -35.20	Doublet Doublet Doublet Doublet	140 135 135 150	n/a	11
$[\mathbf{B}_{10}\mathbf{H}_{12}]^{-}$	5 (1:2:5:1:1)	-1.44 -6.65 -25.9 -36.20	Doublet Doublet Multiplet Doublet	162 132 134	n/a	12
		-40.60	Doublet	132		

 Table S4.
 ¹¹B NMR data for relevant *closo-*, *nido-*, *arachno-* and *hypho-*borates

BORATES	TYPES OF B	δ(¹¹ B) MULTIPLICITY		$J_{ m BH}$	B ATOM CHARGE	REFERENCE
ARACHNO-						
[B ₉ H ₁₄] ⁻	3 (1:1:1)	-6.8 -19.2 -22.4	n/a	137 136 138	n/a	13
[B ₉ H ₁₃] ²⁻	3 (1:1:1)	-4.55 -24.90 -29.00	Doublet Doublet Doublet	122 125 104	n/a	14
$[\mathbf{B}_{10}\mathbf{H}_{14}]^{2}$	4 (1:2:1:1)	-8.09 -23.10 -36.62 -42.26	Doublet Doublet Triplet Doublet	124 130 103 129	n/a	15, 16
<i>HYPHO-</i> BORATES						
$[B_5H_{12}]^-$	2 (4:1)	-15.9 -57.6	n/a	n/a	n/a	17

 Table S4 (continued).
 ¹¹B NMR data for relevant *closo-*, *nido-*, *arachno-* and *hypho-*borates

Figure S1. High-pressure hydrogen absorption experiment of $\text{Li}_2\text{B}_{10}\text{H}_{10}$ –8 LiH (Li₂B₁₀-A) carried out by heating from *RT* to 307 °C ($\Delta T/\Delta t = 5$ °C/min) and isothermal for 24 hours (black line) under $p(\text{H}_2) = 526$ bar (blue line).

Figure S2. Powder X-ray diffraction patterns of Li_2B_{10} -B (bottom blue) and Li_2B_{10} -C (top black). Li₂B₁₀-B measured with $\lambda = 1.5418$ Å and Li_2B_{10} -C measured with $\lambda = 0.20775$ Å. Symbols: $\blacksquare o$ -LiBH₄, $\blacksquare Li_2B_{10}H_{10}$, \blacktriangle LiH, and compound **1**.

Figure S3. FT-IR spectra of Li_2B_{10} -A (solid black line), Li_2B_{10} -B (dotted grey line), and pure LiBH₄, (dashed line).

Figure S4. Solution ¹¹B NMR spectra (14.1 T) of Li_2B_{10} -B dissolved in THF obtained (a) without and (b) with ¹H decoupling.

Figure S5. High-pressure hydrogen absorption experiment of Na₂B₁₀H₁₀–8 NaH (Na₂B₁₀-A) carried out by heating from *RT* to 300 °C ($\Delta T/\Delta t = 5$ °C/min) and isothermal for 24 hours (black line) under $p(H_2) = 534$ bar (blue line).

Figure S6. Powder X-ray diffraction patterns of Na₂B₁₀-B (blue) and Na₂B₁₀-C (black). Na₂B₁₀-B measured with $\lambda = 1.5418$ Å and Na₂B₁₀-C measured with $\lambda = 0.20775$ Å. Symbols: \Box NaBH₄, \odot NaH, \triangle LT-Na₂B₁₀H₁₀ and compound **2**.

Figure S7. FT-IR spectra of Na_2B_{10} -A (solid black line), Na_2B_{10} -B (dotted line), and pure $NaBH_4$ (dashed line).

Figure S8. High-pressure hydrogen absorption experiment of $\text{Li}_2\text{B}_{12}\text{H}_{12}$ –10 LiH (Li₂B₁₂-A) carried out by heating from *RT* to 400 °C ($\Delta T/\Delta t = 5$ °C/min) and isothermal for 24 hours (black line) under $p(\text{H}_2) = 546$ bar (blue line).

Figure S9. Powder X-ray diffraction patterns of Li_2B_{12} -B (bottom blue), Li_2B_{12} -D (middle green) and Li_2B_{12} -C (top black). Li_2B_{12} -B measured with $\lambda = 1.5418$ Å, Li_2B_{12} -C and Li_2B_{12} -D measured with $\lambda = 0.20775$ Å. LT- $Li_2B_{12}H_{12}$, \blacksquare LiH, and # Li₂O.

Figure S10. ¹¹B MAS NMR spectra (16.45 T, $v_R = 15.0$ kHz) of the hydrogenated composites (a) Li₂B₁₂-B and (b) Na₂B₁₂-B, exhibiting centerband resonances at -15.2 ppm and -15.7 ppm, respectively.

Figure S11. High-pressure hydrogen absorption experiment of Na₂B₁₂H₁₂–10 NaH (Na₂B₁₂-A) carried out by heating from *RT* to 400 °C ($\Delta T/\Delta t = 5$ °C/min) and isothermal for 24 hours (black line) under $p(H_2) = 537$ bar (blue line). Large pressure deviations are caused by room temperature fluctuations.

Figure S12. Powder X-ray diffraction patterns of Na₂B₁₂-B (bottom blue), Na₂B₁₂-D (middle green) and Na₂B₁₂-C (top black). Na₂B₁₂-B measured with $\lambda = 1.5418$ Å, Na₂B₁₂-C and Na₂B₁₂-D measured with $\lambda = 0.20775$ Å. Symbols: \diamond LT-Na₂B₁₂H₁₂, \blacksquare NaH and compound **3**

Figure S13. FT-IR spectra of Na₂B₁₂-A (solid black line) and Na₂B₁₂-B (grey dotted line).

References

- 1. F. Klanberg, D. R. Eaton, L. J. Guggenberger and E. L. Muetterties, *Inorg. Chem.*, 1967, 6, 1271-1281.
- 2. E. L. Muetterties, E. L. Hoel, C. G. Salentine and M. F. Hawthone, *Inorg. Chem.*, 1975, 14, 950-951.
- 3. E. L. Muetterties, R. J. Wiersema and M. F. Hawthorne, J. Am. Chem. Soc., 1973, 95, 7520-7522.
- 4. F. Klanberg and E. L. Muetterties, *Inorg. Chem.*, 1966, 5, 1955-1960.
- 5. A. R. Pitochelli, R. Ettinger, J. A. Dupont and M. F. Hawthorne, J. Am. Chem. Soc., 1962, 84, 1057-1058.
- 6. S. G. Shore, E. J. M. Hamilton, A. N. Bridges, J. Bausch, J. A. Krause-Bauer, D. Dou, J. Liu, S. Liu, B. Du, H. Hall, E.
- A. Meyers and K. E. Vermillion, *Inorg. Chem.*, 2003, **42**, 1175-1186.
- 7. E. I. Tolpin and W. N. Lipscomb, J. Am. Chem. Soc., 1973, 95, 2384-2386.
- 8. N. N. Greenwood and J. H. Morr, *Proceedings of the Chemical Society*, 1963, 0, 338-340.
- 9. H. Beall and D. F. Gaines, Inorg. Chim. Acta, 1999, 289, 1-10.
- 10. S. Heřmánek, J. Fusek, B. Štíbr, J. Plešek and T. Jelínek, *Polyhedron*, 1986, 5, 1873-1879.
- 11. A. R. Siedle, G. M. Bodner and L. J. Todd, J. Inorg. Nucl. Chem., 1971, 33, 3671-3676.
- 12. N. N. Greenwood and B. Youll, J. Chem. Soc., Dalton Trans., 1975, 0, 158-162.
- 13. S. Hermanek, Chem. Rev., 1992, 92, 325-362.
- 14. T. D. Getman, J. A. Krause, P. M. Niedenzu and S. G. Shore, *Inorg. Chem.*, 1989, 28, 1507-1510.
- 15. W. N. Lipscomb, R. J. Wiersema and M. F. Hawthorne, *Inorg. Chem.*, 1972, 11, 651-652.
- 16. T. L. Venable, W. C. Hutton and R. N. Grimes, J. Am. Chem. Soc., 1984, 106, 29-37.
- 17. R. J. Remmel, H. D. Johnson, I. S. Jaworiwsky and S. G. Shore, J. Am. Chem. Soc., 1975, 97, 5395-5403.