Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

CaRMeN: A tool for analysing and deriving kinetics in the real world

H. Gossler^a, L. Maier^b, S. Angeli^a, S. Tischer^b, O. Deutschmann^{a,b}

^a Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Germany

^b Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Germany

Corresponding author: deutschmann@kit.edu

Supplemental material

Table S1: Selection of experimental literature data [Ref.] for CH₄ conversion over Rh and surface reaction mechanisms [Mechanism] used for modeling these experiments.

	CH ₄ /Ox	P (bar)	Temp (K)	GHSV/τ/Flow/U	Catalyst	Reactor type	Mechanism	Remarks	Ref.
	CH ₄ /O ₂ =0.8- 2.2	1.42	600 -1500	U₀(298K)=20.6 cm/s	Rh/ Al ₂ O ₃	monolith	Hickman – Schmidt 1993 ¹		Hickman and Schmidt ¹
	CH ₄ /O ₂ = 1.8	1.10	T _o =300	flow=7 slpm	Rh/ Al ₂ O ₃	monolith	Maier – Deutschmann 2001 ²		Deutschmann et al. ²
C P	CH ₄ /O ₂ =1-1.78	1.10	573-1123	GHSV= 8 × 10 ⁵ - 4.5 × 10 ⁶ NI kg ⁻¹ h ⁻¹	Rh or Rh/ γ - Al ₂ O ₃ coated α -Al ₂ O ₃ foam	annular reactor	Maestri-Vlachos 2009 ³	H ₂ O, CO ₂ , CO co-feed=1–2 %	Maestri et al. ³
0	CH ₄ /O ₂ =1-4	1.40- 8.00	1060-1400	τ=1-75 × 10 ⁻³ s	Rh/α-Al₂O₃	fixed bed	Hickman – Schmidt 1993 ¹	industrially relevant conditions	Slaa et al. ⁴
	CH ₄ /O ₂ =1.4, 2.0, 2.6	1.00	300-1500	flow=5 slpm	Rh-coated foam monoliths	monolith	Maier - Deutschmann 2001 ² , Maestri- Vlachos 2009 ³	spatially- resolved data	Williams et al. ⁵

	CH₄/Ox	P (bar)	Temp (K)	GHSV/τ/Flow/U	Catalyst	Reactor type	Mechanism	Remarks	Ref.
	CH ₄ /O ₂ =1.4, 2.0, 2.8	1.00	300-1500	flow=5 slpm or 10 slpm	Rh-coated foam monoliths	monolith	Maier – Deutschmann 2001 ²	spatially- resolved data	Horn et al. ⁶
	CH ₄ /O ₂ =2.0	1.32- 1.52	T _o =300	GHSV=200-500 Nm ³ kg ⁻¹ h ⁻¹	Rh/ Al ₂ O ₃ spheres	fixed bed	Maier – Deutschmann 2001 ²	integral conversion and selectivity	Bizzi et al. ⁷
	CH ₄ /O ₂ =3.0	1.32- 1.52	T _o =300	GHSV=200-500 Nm ³ kg ⁻¹ h ⁻¹	Rh/ Al₂O₃ spheres	fixed bed	Maier – Deutschmann 2001 ²		Bizzi et al. ⁸
	CH ₄ /O ₂ =1.7	1.10	385-1000	τ=20×10 ⁻³ s	Rh/α-Al₂O₃	honeycomb monolith	Maier – Deutschmann 2001 ^{2, 9}	transient light- off experiments	Schwiedernoch et al. ⁹
	CH ₄ /O ₂ = 2, 1.7	1.10	T₀=298	GHSV=1.0 × 10 ⁵ h ⁻¹	Rh/α-Al₂O₃	foam monolith	Maier – Deutschmann 2001 ²	Effect of He, H_2O , and CO_2 addition	Ding et al. ¹⁰
	CH ₄ /O ₂ = 2.0	1.10	T_o =ambient	GHSV=4.0 × 10 ⁵ h ⁻¹	Rh/γ-Al₂O₃	monolith	Maier – Deutschmann 2001 ⁹	Transient species profiles	Williams et al. ¹¹
	CH ₄ /O ₂ = 0.9– 1.75	5.00	T _o =429-457	U _{in} =0.28-0.57 m/s	Rh/Al₂O₃ ceramic plates	coated channel flow reactor	Maier – Deutschmann 2001 ⁹ , Kraus - Lindstedt 2017 ¹²	optically accessible channel flow reactor- Raman-LIF	Sui et al. ¹³
	CH ₄ /O ₂ = 0.15- 0.2	2.00- 12.00	T _o =377-476	U _{in} =0.21-1.25 m/s	Rh/Al₂O₃ coated ceramic plates	coated channel flow reactor	Karakaya - Deutschmann 2016 ¹⁴ , Deshmuhk - Vlachos 2007 ¹⁵ , Kraus - Lindstedt 2017 ¹²	in situ Raman	Sui et al. ¹⁶
	CH4/O2 = 2.5-4	4.00- 6.00	T₀ =385-673	U _{in} =0.19-13.20 m/s	Rh/ZrO ₂ coated ceramic plates	coated channel flow reactor	Maier – Deutschmann 2001 ⁹ , Kraus - Lindstedt 2017 ¹²	in situ Raman	Appel et al. ¹⁷

	CH ₄ /Ox	P (bar)	Temp (K)	GHSV/τ/Flow/U	Catalyst	Reactor type	Mechanism	Remarks	Ref.
	CH ₄ /O ₂ = 2.0	5.00	T₀ =473, 573, 623 K	U _{in} =3.90-5.10 m/s	Rh/Al ₂ O _{3,} Rh/ZrO ₂ , Rh/CeO ₂ - ZrO ₂	coated channel flow reactor	Maier – Deutschmann 2001 ⁹	<i>in situ</i> Raman, H ₂ O and CO ₂ co-feed	Ericksson et al. ¹⁸
	CH ₄ /O ₂ =0.56- 2.06	0.50	873-1023	flow=15.5 slpm	Rh/ Al ₂ O ₃	stagnation flow	Karakaya – Deutschmann 2016 ¹⁴		Karakaya et al. ¹⁴
	CH4/O2=2	1.10	T _o =423, T _{cat} <673	flow=5 slpm	Rh or Rh/ γ - Al ₂ O ₃ coated α -Al ₂ O ₃ foam	annular reactor	Maestri - Vlachos 2009 ³	spatially resolved autothermal experiments - effect of washcoat addition	Donazzi et al. ¹⁹
	CH4/O2=1.78	1.10	T₀ =533-623	flow=10 Nl/m	Rh/ α-Al ₂ O ₃ monolith	adiabatic lab scale reactor	Maestri - Vlachos 2009 ³	spatially resolved CPO experiments - CO ₂ addition	Donazzi et al. ²⁰
	CH4/O2=1-1.78	1.10	623-1123	GHSV= 8 × 10^{5} - 4.5 × 10^{6} NI/ kg ⁻¹ h ⁻¹	Rh/ α -Al ₂ O ₃	annular reactor	Maestri - Vlachos 2009 ³	H ₂ O, CO ₂ , CO, H ₂ co-feed=1– 2%	Donazzi et al. ²¹
	CH4/O2=1.75	1.00- 4.00	T _o =623	flow=10 NI/m	Rh/Al₂O₃	honeycomb monolith	Maestri - Vlachos 2009 ³	spatially resolved temperature and concentration profiles	Donazzi et al. ²²
S	S/C = 1-3	1.10	673–823	GHSV=30000-70000 h ⁻¹	Rh/CeO_2 - ZrO_2 -La $_2O_3$	fixed bed	Kechagiopoulos – Lemonidou 2017 ²³	low temperature SR	Kechagiopoulos et al. ²³
R	S/C =1.5, 2, 2.5	1.10	623-1123	GHSV= 2 × 10 ⁶ NI kg ⁻¹ h ⁻¹	Rh/α - Al_2O_3	annular reactor	Maestri - Vlachos 2009 ³		Donazzi et al. ²¹

	CH₄/Ox	P (bar)	Temp (K)	GHSV/τ/Flow/U	Catalyst	Reactor type	Mechanism	Remarks	Ref.
	S/C =1.04-1.06	0.50	973, 1008	flow=17.2 slpm	Rh/ Al ₂ O ₃	stagnation flow	Karakaya – Deutschmann 2016 ¹⁴		Karakaya et al. ¹⁴
	S/C =2.2-4	1.10	673-1123	GHSV= 40000 h ⁻¹	Rh/ Al ₂ O ₃	honeycomb monolith	Schädel - Deutschmann 2009 ²⁴	Exp. also with C_2H_6 , C_3H_8 , C_4H_{10}	Schädel et al. ²⁴
	S/C=4	1.10	973	GHSV= 48000 h ⁻¹	Rh/CeO₂	Microchan nel reactor	Thormann - Deutschmann 2009 ²⁵	Exp. also with propane and hexadecane	Thormann et al. 25
A T R	16.7% CH₄, 0– 40.0% H₂O, 1.7–16.7% O₂	1.00	573-1073	GHSV=7200 h ⁻¹	Rh/ Al ₂ O ₃	fixed bed	Maier - Deutschmann 2001 ²	Exp. data taken from Ayabe et al. ²⁶	Dixit et al. ²⁷
D R	$CO_2=1-4\%$, $CH_4=1-2\%$, O_2 co-feed=0.1%, H_2 $co-$ feed=0.1-1%	1.10	623-1123	GHSV= 2×10^6 NI kg _{cat} ⁻¹ h ⁻¹	Rh/a-Al₂O₃	annular reactor	Maestri-Vlachos 2009 ³		Donazzi et al. ²⁸
	CH ₄ /CO ₂ =1.1	0.50	973	Flow=15.5 slpm	Rh/ Al ₂ O ₃	stagnation flow	Karakaya – Deutschmann 2016 ¹⁴		Karakaya et al. ¹⁴
W G S	CO/H ₂ O/N ₂ = 4/2.7/93.3, 1.5/2.3/96.2, 1.5/3.5/95.	1.10	623-546	GHSV= 2×10^6 NI kg _{cat} ⁻¹ h ⁻¹	Rh/ Al₂O₃	annular reactor	Maestri - Vlachos 2009 ³		Donazzi et al. ²¹
R W G S	CO=1-2%, H ₂ O=1-4%	1.10	623-546	GHSV= 2×10^6 NI kg _{cat} ⁻¹ h ⁻¹	Rh/ Al ₂ O ₃	annular reactor	Maestri-Vlachos 2009 ³	Also CO & H ₂ - rich combustion tests	Donazzi et al. ²⁸

References

- 1. D. A. Hickman and L. D. Schmidt, *AIChE Journal*, 1993, **39**, 1164-1177.
- 2. O. Deutschmann, R. Schwiedemoch, L. I. Maier and D. Chatterjee, *Studies on Surface Science and Catalysis*, 2001, DOI: 10.1016/S0167-2991(01)80312-8, 251-258.
- 3. M. Maestri, D. G. Vlachos, A. Beretta, G. Groppi and E. Tronconi, *AIChE Journal*, 2009, **55**, 993-1008.
- 4. J. C. Slaa, R. J. Berger and G. B. Marin, *Catalysis Letters*, 1997, **43**, 63-70.
- 5. R. Horn, K. A. Williams, N. J. Degenstein, D. D. Nogare, S. A. Tupy and L. D. Schmidt, *Journal of Catalysis*, 2007, **249**, 380-393.
- 6. R. Horn, K. A. Williams, N. J. Degenstein and L. D. Schmidt, *Journal of Catalysis*, 2006, **242**, 92-102.
- 7. M. Bizzi, L. Basini, G. Saracco and V. Specchia, *Chemical Engineering Journal*, 2002, **90**, 97-106.
- 8. M. Bizzi, L. Basini, G. Saracco and V. Specchia, *Industrial and Engineering Chemistry Research*, 2003, **42**, 62-71.
- 9. R. Schwiedernoch, S. Tischer, C. Correa and O. Deutschmann, *Chemical Engineering Science*, 2003, **58**, 633-642.
- 10. S. Ding, Y. Cheng and Y. Cheng, *Industrial Engineering and Chemistry Research*, 2011, **50**, 856-865.
- 11. K. A. Williams, C. A. Leclerc and L. D. Schmidt, *AIChE Journal*, 2005, **51**, 247-260.
- 12. P. Kraus and R. P. Lindstedt, *J Phys Chem C*, 2017, **121**, 9442-9453.
- 13. R. Sui, J. Mantzaras and R. Bombach, *Proceedings of the Combustion Institute*, 2017, **36**, 4313-4320.
- 14. C. Karakaya, L. Maier and O. Deutschmann, *International Journal of Chemical Kinetics*, 2016, **48**, 144-160.
- 15. S. R. Deshmukh and D. G. Vlachos, *Combustion and Flame*, 2007, **149**, 366-383.
- 16. R. Sui, J. Mantzaras, R. Bombach and A. Denisov, *Proceedings of the Combustion Institute*, 2017, **36**, 4321-4328.
- 17. C. Appel, J. Mantzaras, R. Schaeren, R. Bombach, A. Inauen, N. Tylli, M. Wolf, T. Griffin, D. Winkler and R. Carroni, *Proceedings of the Combustion Institute*, 2005, **30**, 2509-2517.
- 18. S. Eriksson, A. Schneider, J. Mantzaras, M. Wolf and S. JärÅs, *Chemical Engineering Science*, 2007, **62**, 3991-4011.
- 19. A. Donazzi, M. Maestri, B. C. Michael, A. Beretta, P. Forzatti, G. Groppi, E. Tronconi, L. D. Schmidt and D. G. Vlachos, *Journal of Catalysis*, 2010, **275**, 270-279.
- 20. A. Donazzi, M. Maestri, A. Beretta, G. Groppi, E. Tronconi and P. Forzatti, *Applied Catalysis A: General*, 2011, **391**, 350-359.
- 21. A. Donazzi, A. Beretta, G. Groppi and P. Forzatti, *Journal of Catalysis*, 2008, **255**, 241-258.
- 22. A. Donazzi, D. Livio, C. Diehm, A. Beretta, G. Groppi and P. Forzatti, *Applied Catalysis A: General*, 2014, **469**, 52-64.
- 23. P. N. Kechagiopoulos, S. D. Angeli and A. A. Lemonidou, *Applied Catalysis B: Environmental*, 2017, **205**, 238-253.
- 24. B. T. Schädel, M. Duisberg and O. Deutschmann, *Catalysis Today*, 2009, **142**, 42-51.
- 25. J. Thormann, L. Maier, P. Pfeifer, U. Kunz, O. Deutschmann and K. Schubert, *International Journal of Hydrogen Energy*, 2009, **34**, 5108-5120.
- 26. S. Ayabe, H. Omoto, T. Utaka, R. Kikuchi, K. Sasaki, Y. Teraoka and K. Eguchi, *Applied Catalysis A: General*, 2003, **241**, 261-269.
- 27. M. Dixit, R. Baruah, D. Parikh, S. Sharma and A. Bhargav, *Computers and Chemical Engineering*, 2016, **89**, 149-157.
- 28. A. Donazzi, A. Beretta, G. Groppi and P. Forzatti, *Journal of Catalysis*, 2008, **255**, 259-268.