Supporting Information for

Intramolecular Singlet Fission in a Face-to-Face Stacked Tetracene

Trimer

Xuemin Wang,[†] Rui wang,[‡] Li Shen,[†] Zhaofeng Tang,[†] Congying Wen,[†] Bin Dong,[†] Heyuan Liu,^{*,†} Chunfeng Zhang,^{*,‡} and Xiyou Li^{*,†}

[†]College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, China

[‡] National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing 210093, China

Content

1. The crystal structure of dimer 3	1
2. The absorption spectra of trimer 4 and the superposition of dim	er 3 and
monomer 2	2
3. The absorption spectra of trimer 4 and the superposition of monon	1er 1 and
monomer 2	3
4. Electronic orbitals (HOMO and LUMO) for the ground state (S_0) o	f dimer 3
and trimer 4	4
5. The transient absorption of dimer 3	5
6. The sensitized experiment of trimer 4 in degassed THF	6
7. Fluence independent dynamics of trimer 4	7
8. The comparison of the TA spectra obtained from iSF and sen	sitization
experiment in dimer 3	8
9. Solvent independent dynamics of trimer 4	9
10. The comparison of the single wavelength dynamics between dim	er 3 and
trimer 4	10
11. Singlet Fission yield determination	11
12. Copies of the ¹ H NMR spectra and MALDI-TOF spectra of new co	mpounds
15	
References	20
Appendix. Geometry optimization of S ₀ states	21

1. The crystal structure of dimer 3

Figure S1. The crystal structure of dimer 3.^{S1}

Table S1. The comparison of the structural parameters between the minimized structure and the crystal structure.^{S1}

	α ($\alpha_1 = \alpha_2$)	β ($\beta_1 = \beta_2$)	$d_1(\text{\AA})$	$d_2(\text{\AA})$
Dimer 3 (crystal structure)	44.7°	22.8°	3.1	3.8
Dimer 3 (minimized molecular structure)	41.5°	11.6°	3.1	3.8

2. The absorption spectra of trimer 4 and the superposition of dimer 3 and monomer 2

Figure S2. The absorption spectra of trimer 4 and the superposition of dimer 3 and monomer 2.

3. The absorption spectra of trimer 4 and the superposition of monomer 1 and monomer 2

Figure S3. The absorption spectra of trimer 4 and the superposition of monomer 1 and monomer 2.

4. Electronic orbitals (HOMO and LUMO) for the ground state (S_0) of dimer 3 and trimer 4

Figure S4. Electronic orbitals (HOMO and LUMO) for the ground state (S_0) of dimer 3 (top) and trimer 4 (below).

5. The transient absorption of dimer 3

Figure S5. A) The transient absorption spectra of dimer **3** in degassed THF (5×10^{-5} M) with the excitation wavelength at 500 nm. B) The transient absorption dynamics of dimer **3** probed at different wavelengths. C) Deconvoluted transient spectra of singlet (S₁) and triplet pair (¹(TT)) of dimer **3** as solved by global analysis. D) Population evolution of dimer **3** obtained from global analysis.

6. The sensitized experiment of trimer 4 in degassed THF

Figure S6. Nanosecond TA measurements of PtOEP doped trimer **4** in THF following excitation of PtOEP at 355 nm at A) short and B) long delays.

7. Fluence independent dynamics of trimer 4

Figure S7. Comparison of normalized dynamics of the absorption at 410 nm (A) and 626 nm (B) of trimer **4**, excited with 500 nm pump with varying pump fluence in degassed THF.

8. The comparison of the TA spectra obtained from iSF and sensitization experiment in dimer 3

Figure S8. The comparison of the TA spectra obtained from iSF and sensitization experiment in dimer 3.

9. Solvent independent dynamics of trimer 4

Figure S9. Comparison of normalized dynamics of the absorption at 410 nm (A) and 626 nm (B) of trimer 4 in different solvents.

Figure S10. The comparison of the single wavelength dynamics between dimer 3 and trimer 4.

11. Singlet Fission yield determination

The determination of the yield of triplet involves triplet sensitization experiments using a solution consisting of PtOEP and trimer **4** excited at 355 nm. Triplets are generated in PtOEP by intersystem crossing and are then transferred to trimer **4** via collisional energy transfer.

In the ns-TA experiment of trimer 4 (1.5×10^{-5} M) and PtOEP (2×10^{-5} M), the GSB signal at 2 ns at ~ 538 nm is about -0.0725. The triplet concentration of PtOEP after photoexcitation can be calculated as:

$$c_{T}^{PtOEP} = \frac{\Delta A_{538 nm, 2 ns}}{\varepsilon_{538 nm}^{PtOEP} b} = \frac{-\log_{10}(\Delta T/T + 1)}{\varepsilon_{538 nm}^{PtOEP} b} = \frac{-\log_{10}(-0.0725 - 1)}{51400 mol^{-1} L cm^{-1} + 1}$$

× 10⁻⁶ mol L⁻¹

Triplet energy transfer efficient (\Box) :

$$\Phi_{ET} = \frac{1/10.2\mu s}{1/10.2\mu s + 1/35\mu s} = 77\%$$

In the ns-TA experiment of trimer 4 and PtOEP, the ESA signal at 40 μ s at ~ 424 nm is about -0.002389. The molar extinction coefficients of triplet absorption at 424 nm for trimer 4:

$$\varepsilon_{424 nm}^{trimer}$$

$$= \frac{\Delta A}{b * c_T^{PtOEP}} = \frac{-\log_{10}(\Delta T/T + 1)}{b * c_T^{PtOEP}} = \frac{-\log_{10}(-0.002389)}{0.2 \ cm \times 3.18 \times 10^{-6} \ mol}$$
$$= 2.12 \times 10^3 \ mol^{-1} \ L \ cm^{-1}$$

In the fs-TA experiment of trimer 4 (8.25×10⁻⁵ M), the ESA signal at 100 ps at ~ 424 nm is about -0.00241. Using the calculated $\varepsilon_{424 nm}^{trimer}$ from the sensitization experiment, the triplet concentration from iSF can be calculated as:

$$c_T = \frac{\Delta A_{424 nm}}{\varepsilon_{424 nm}^{PtOEP} b} = \frac{-\log_{10}(\Delta T/T + 1)}{2120 \ mol^{-1} \ L \ cm^{-1} \times 0.2 \ cm} = 2.47 \times 10^{-6} \ mol \ L^{-1}$$

The total number of photons per pump pulse (500 nm):

$$\frac{photons}{pulse} = \frac{power}{(rep \ rate)(energy \ per \ photon)} = \frac{100 \times 10^{-6}W}{1000 \ s^{-1}(3.98 \times 10^{-19}J)}$$
$$= 2.5 \times 10^{11} \ pulse^{-1}$$

Spot volume (V):

$$V = Area \ d = \pi (150 \times 10^{-4} cm)^2 \times 0.2 \ cm \times 0.001 \ L \ cm^{-3} = 1.41 \times 10^{-7} \ L$$

The fraction of light intensity transmitted $({}^{I}/I_{0})$ of trimer 4 at 500 nm can be calculated as:

$$I/I_0 = 10^{-\varepsilon_{500 \, nm^c trimer^L}} = 10^{-2.88 \times 10^4 \, cm^{-1} \, mol^{-1} \, L \times 8.25 \times 10^{-1} \, mol^{-1} \, L}$$

The initial concentration of singlet state (c_s) :

$$= \frac{(photons/pulse)(1 - I/I_0)}{N_A V} = \frac{(2.5 \times 10^{11}) \times (1 - 0.335)}{(6.02 \times 10^{23} \, mol^{-1})(1.41 \times 10)}$$

mol L⁻¹

Triplet yield of trimer 4 (\Box _{triplet}):

$$\Box_{triplet} = \frac{c_T}{c_s} = \frac{2.47 \times 10^{-6} mol \, L^{-1}}{1.96 \times 10^{-6} mol \, L^{-1}} = 126\%$$

Propagated error in triplet yield determination:⁸²

First, we compute the error in determining the concentration of triplet exciton for PtOEP $\begin{pmatrix} c^{PtOEP} \\ T \end{pmatrix}$,

$$\frac{\delta\left(c^{PtOEP}_{T}\right)}{c^{PtOEP}_{T}} = \sqrt{\left(\frac{\delta\left(\Delta A_{538\,nm}\right)}{\Delta A_{538\,nm}}\right)^{2} + \left(\frac{\delta\left(\varepsilon^{PtOEP}_{538\,nm}\right)}{\varepsilon^{PtOEP}_{538\,nm}}\right)^{2}}$$
$$= \sqrt{0.05^{2} + 0.07^{2}} = 0.086$$

The propagated error of the molar extinction coefficients of triplet absorption at 424 nm for trimer **4**:

$$\frac{\delta\left(\varepsilon_{424 nm}^{trimer}\right)}{\varepsilon_{424 nm}^{trimer}} = \sqrt{\left(\frac{\delta(\Delta A)}{\Delta A}\right)^2 + \left(\frac{\delta\left(c_T^{PtOEP}\right)}{c_T^{PtOEP}}\right)^2}$$
$$= \sqrt{0.05^2 + 0.086^2} = 0.099$$

The propagated error of the triplet concentration from iSF:

$$\frac{\delta(c_T)}{c_T} = \sqrt{\left(\frac{\delta(\Delta A_{424 nm})}{\Delta A_{424 nm}}\right)^2 + \left(\frac{\delta(\varepsilon_{424 nm}^{PtOEP})}{\varepsilon_{424 nm}^{PtOEP}}\right)^2} = \sqrt{0.05^2 + 0.099^2} = 0.11$$

The error of photons per pump pulse:

$$\frac{\delta\left(\frac{photons}{pulse}\right)}{\frac{photons}{pulse}} = \frac{\delta(power)}{power}$$

$$= 0.03$$

The error of spot volume:

$$\frac{\delta(V)}{V} = \sqrt{2\left(\frac{\delta(r)}{r}\right)^2}$$
$$= \sqrt{0.08^2 \times 2} = 0.11$$

The propagated error of the fraction of light intensity absorbed $(^{I}/I_{0})$ of trimer 4 at 500 nm:

$$\frac{\delta(I/I_0)}{I/I_0} = \varepsilon_{500 nm} c_{trimer} Lln(10) \sqrt{\left(\frac{\delta(\varepsilon_{500 nm})}{\varepsilon_{500 nm}}\right)^2 + \left(\frac{\delta(c_{trimer})}{c_{trimer}}\right)^2} = 0.474 \times 2.30 \times \sqrt{0.07^2 + 0.02^2} = 0.079$$

The propagated error of the initial concentration of singlet state (c_s):

$$\frac{\delta(c_s)}{c_s} = \sqrt{\left(\frac{\delta\left(\frac{photons}{pulse}\right)}{\frac{photons}{pulse}}\right)^2 + \left(\frac{\delta(I/I_0)}{I/I_0}\right)^2 + \left(\frac{\delta(V)}{V}\right)^2} = \sqrt{0.03^2 + 0.079^2 + 0.11^2} = 0.138$$

The propagated error of triplet yield of trimer 4 ($\Box_{triplet}$):

$$\frac{\delta(\Box_{triplet})}{\Box_{triplet}} = \sqrt{\left(\frac{\delta(c_s)}{c_s}\right)^2 + \left(\frac{\delta(c_T)}{c_T}\right)^2} = \sqrt{0.138^2 + 0.11^2} = 0.17$$

12. Copies of the ¹H NMR spectra and MALDI-TOF spectra of new compounds

Figure S12. The ¹³C NMR spectrum of monomer 1.

Figure S13. The MALDI-TOF spectrum of monomer 1.

Figure S14. The ¹H NMR spectrum of monomer 2.

Figure S15. The ¹³C NMR spectrum of monomer 2.

Figure S16. The MALDI-TOF spectrum of monomer 2.

Figure S17. The ¹H NMR spectrum of dimer 3.

Figure S18. The MALDI-TOF spectrum of dimer 3.

Figure S19. The ¹H NMR spectrum of trimer 4.

Figure S20. The MALDI-TOF spectrum of trimer 4.

References

S1 N. V. Korovina, S. Das, Z. Nett, X. Feng, J. Joy, R. Haiges, A. I. Krylov, S. E. Bradforth and M. E. Thompson, J. Am. Chem. Soc., 2016, **138**, 617-627.

S2 B. J. Walker, A. J. Musser, D. Beljonne and R. H. Friend, *Nat. Chem.*, 2013, **5**, 1019-1024.

Appendix. Geometry optimization of S_0 states

Dimer 3

С	-0.67186	6.614	0.18678
Н	-1.19665	7.55276	0.33369
С	-1.33992	5.4131	0.37673
Н	-2.38321	5.40422	0.67543
С	-0.68065	4.1901	0.19601
С	-1.36645	2.95914	0.41531
С	-1.92646	1.90194	0.61473
С	-2.50975	0.61564	0.79811
С	-3.86802	0.40113	0.51197
С	-4.73783	1.45976	0.09625
Н	-4.32665	2.46068	0.00993
С	-6.0483	1.22033	-0.18439
Н	-6.69381	2.03589	-0.49652
С	-6.5904	-0.09654	-0.07303
Н	-7.63941	-0.26367	-0.29771
С	-5.79625	-1.1317	0.3112
Н	-6.19845	-2.13796	0.39674
С	-4.40921	-0.92748	0.61198
С	-3.5773	-1.98488	0.95072
Н	-3.98345	-2.99356	0.97876
С	-2.21502	-1.79391	1.23423
С	-1.35712	-2.87893	1.49769
Н	-1.76545	-3.88642	1.47004
С	-0.00908	-2.69179	1.75687
С	0.89508	-3.78728	1.95612
Н	0.50034	-4.79878	1.90242
С	2.21523	-3.56638	2.19982

Н	2.89173	-4.40426	2.34201
С	2.72932	-2.23403	2.27681
Н	3.78694	-2.07963	2.46709
С	1.90664	-1.16623	2.09396
Н	2.29634	-0.15299	2.13239
С	0.5158	-1.35216	1.8059
С	-0.31661	-0.27846	1.52376
Н	0.10015	0.72436	1.51072
С	-1.67127	-0.46289	1.20537
С	0.6718	6.614	-0.18674
Н	1.19659	7.55276	-0.33365
С	1.33986	5.41309	-0.37666
Н	2.38316	5.40421	-0.67534
С	0.68059	4.19009	-0.19593
С	1.36644	2.95915	-0.41515
С	1.92655	1.90201	-0.61458
С	2.50979	0.61571	-0.7981
С	3.86809	0.40117	-0.51208
С	4.73793	1.45975	-0.09632
Н	4.32676	2.46067	-0.00988
С	6.04841	1.2203	0.18423
Н	6.69394	2.03583	0.49638
С	6.5905	-0.09656	0.07271
Н	7.63952	-0.26372	0.29732
С	5.79633	-1.13168	-0.31158
Н	6.19852	-2.13794	-0.39722
С	4.40928	-0.92743	-0.61226
С	3.57735	-1.98481	-0.95104
Н	3.98352	-2.99347	-0.97928
С	2.21503	-1.79382	-1.23439
		~~	

С	1.35712	-2.87882	-1.49789
Н	1.76548	-3.88631	-1.47049
С	0.00905	-2.69167	-1.75688
С	-0.89511	-3.78715	-1.95623
Н	-0.50033	-4.79865	-1.9028
С	-2.21529	-3.56624	-2.19972
Н	-2.89179	-4.40413	-2.34197
С	-2.72944	-2.2339	-2.27639
Н	-3.78709	-2.07949	-2.4665
С	-1.90677	-1.16611	-2.09342
Н	-2.29651	-0.15287	-2.13164
С	-0.51589	-1.35205	-1.8056
С	0.31655	-0.27837	-1.52347
Н	-0.10022	0.72445	-1.5103
С	1.67127	-0.4628	-1.20534

Trimer 4

С	5.43529	3.37404	0.931
Н	5.9415	4.30841	1.13881
С	4.24922	3.37722	0.21079
Н	3.82138	4.30729	-0.14074
С	3.57531	2.17883	-0.06547
С	2.34218	2.19477	-0.77735
С	1.28018	2.1868	-1.36019
С	5.96985	2.17016	1.39163
Н	6.89328	2.16703	1.95728
С	5.32132	0.97326	1.12334
Н	5.7328	0.03475	1.47216
С	4.12469	0.95409	0.39138

С	3.47974	-0.28139	0.10296
С	2.92694	-1.32645	-0.16162
С	2.19111	-2.4959	-0.49585
С	2.23882	-3.6341	0.32606
С	3.11177	-3.73144	1.45573
Н	3.764	-2.89462	1.67511
С	3.12142	-4.85044	2.23539
Н	3.79212	-4.91361	3.08422
С	2.25077	-5.9452	1.95373
Н	2.28117	-6.82879	2.57864
С	1.40471	-5.88815	0.8889
Н	0.75919	-6.72382	0.64698
С	1.38449	-4.74683	0.02797
С	0.55246	-4.70672	-1.08406
Н	-0.08925	-5.55346	-1.29471
С	0.52507	-3.60027	-1.94056
С	-0.3097	-3.57355	-3.09428
С	-0.35746	-2.43534	-3.91617
С	-1.23051	-2.33795	-5.04575
Н	-1.88278	-3.17474	-5.2651
С	-1.24025	-1.2189	-5.82534
Н	-1.91107	-1.15567	-6.67407
С	-0.36961	-0.12413	-5.54368
Н	-0.40011	0.7595	-6.16853
С	0.47654	-0.18123	-4.47893
Н	1.12206	0.65444	-4.237
С	0.49687	-1.32261	-3.61808
С	1.32894	-1.36273	-2.50608
Н	1.97063	-0.51598	-2.29542
C	1.35637	-2.46919 24	-1.64959

С	-1.04559	-4.74297	-3.42845
С	-1.59845	-5.78805	-3.69284
С	-2.24355	-7.02348	-3.9811
С	-1.69426	-8.24826	-3.52422
С	-3.44027	-7.04256	-4.71292
С	-2.36835	-9.44659	-3.80032
С	-4.08897	-8.23941	-4.98106
Н	-3.85168	-6.10403	-5.06174
С	-3.55449	-9.44331	-4.5204
Н	-1.94056	-10.37669	-3.44881
Н	-5.01247	-8.23621	-5.54659
Н	-4.06083	-10.37764	-4.72811
С	-0.46107	-8.26432	-2.81247
С	0.60099	-8.25638	-2.22975
С	2.33394	-6.11325	-2.92483
С	3.05694	-4.95073	-3.15161
С	2.65571	-6.98373	-1.87249
С	2.69989	-4.03943	-4.19712
С	4.1365	-4.60044	-2.26431
С	3.79833	-6.68743	-1.04918
С	1.83913	-8.10575	-1.54469
Н	1.88733	-4.3088	-4.86076
С	3.33324	-2.84158	-4.32074
С	4.77263	-3.32413	-2.43083
С	4.49668	-5.48189	-1.25746
С	4.14168	-7.56854	-0.0114
С	2.19899	-8.97307	-0.49988
Н	3.02938	-2.14269	-5.08966
С	4.38116	-2.47573	-3.4188
Н	5.55715	-3.04469 25	-1.73688

Н	5.31249	-5.22902	-0.58907
Н	5.00028	-7.33662	0.60984
С	3.3902	-8.70333	0.26186
С	1.39924	-10.10608	-0.13721
Н	4.85043	-1.50506	-3.52186
С	3.7329	-9.5874	1.33969
С	1.7611	-10.91634	0.89548
Н	0.4996	-10.30139	-0.70833
Н	4.63514	-9.37926	1.90426
С	2.94876	-10.65526	1.64746
Н	1.14849	-11.77067	1.15665
Н	3.21559	-11.31655	2.4627
Н	1.48318	-6.33915	-3.55641
С	0.04206	2.0362	-2.04525
С	-0.31779	2.90359	-3.09
С	-0.7745	0.91413	-1.71756
С	-1.50897	2.63389	-3.85179
С	0.48197	4.03663	-3.45257
С	-1.91709	0.61788	-2.54093
С	-0.45276	0.04357	-0.66528
С	-1.85163	3.51803	-4.92959
С	-2.26043	1.49906	-3.57865
С	0.12015	4.84694	-4.48523
Н	1.38158	4.23192	-2.8814
С	-2.61543	-0.58769	-2.33278
С	-1.17576	-1.11897	-0.4386
Н	0.39798	0.26942	-0.03365
С	-1.06748	4.58591	-5.23727
Н	-2.75382	3.30989	-5.49424
Н	-3.11902	1.26718 26	-4.19991

Н	0.73276	5.7013	-4.74632
С	-2.25528	-1.46921	-1.32597
Н	-3.43124	-0.8405	-3.00118
С	-0.81876	-2.03034	0.60686
Н	-1.33427	5.24722	-6.0525
С	-2.89139	-2.74554	-1.15957
С	-1.45207	-3.22821	0.73035
Н	-0.00626	-1.76097	1.2706
С	-2.49992	-3.59403	-0.17168
Н	-3.67589	-3.02493	-1.85357
Н	-1.14821	-3.92717	1.49922
Н	-2.96916	-4.56473	-0.06874