Conformational Preferences and Isomerization upon Excitation/Ionization of 2-

Methoxypyridine and 2-N-methylaminopyridine

Wenshuai Dai,^{a,b} Sheng Liu,^{a,b} Zhe Zhang,^{a,b} Xiaoping Chi,^{a,b} Min Cheng,^a Yikui Du, ⁺a and Qihe Zhu^a

^a Beijing National laboratory of molecular Science, State Key laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China

^b University of Chinese Academy of Sciences, Beijing, 100049, P. R. China

*Email: ydu@iccas.ac.cn

Supplementary Information

nterm	ediate level in the	S ₁ state							 Calc.^b 	2PyOH ^c	Anisole ^d	Assignment and
2	τ1 0(CH ₃)τ1	16b1 0τ1	10b1	X1 0	6a1	6b1	11 0	121				description ^e
38									82			τ1 0(CH ₃)
107									105			τ1 0(OCH ₃)
139	141		138									τ2 0(CH ₃)
		155										τ1 0(CH₃)τ1
192	196		194									τ2 0(OCH ₃)
211	214	212	211						222		216	10b1 0, γ(aryl C-
				239					232		234	X1 0, β(O-CH ₃)
	314	307	311									10b1 0τ1 0(CH ₃)
	330	325										10b1 0τ1 0(OCH ₃)
			363						364			16b1 0, γ-ring
			448		448				437	424	528	151 0, β(aryl C-O)
152		455							448		355	16a1 0, γ-ring
173												16b1 0τ1 0(OCH ₃)
					488						482	X2 0, β(O-CH ₃)
			581		585	581	580		573	534	431	6a1 0, β(C-C-C)
					599	597			588	596	570	6b1 0, β(C-C-C)
						668						10b1 016a1 0
	726		727									16b2 0, γ-ring
							802		797	841	764	11 0, breathing
				825								X1 06a1 0
922												16b2 0τ2 0(OCH ₃)
				965								16b2 0X1 0
								995	958	989	1021	121 0, β(C-C-C)
				1037								X1 011 0
								1088	1082	1157	1108	18b1 0, β(C-H)
128												v1 0(O-CH ₃)τ2
				1172					1129	1586	1173	9a1 0, β(C-H)
						1179						6a1 06b1 0

^a Experimental values are the shifts from origin band 69379 cm⁻¹. ^b Calculated at ω B97XD/CC-pVTZ level, scaled by 0.96. ^c Ref 39. ^d Ref 41. ^e v denotes bond stretching; β denotes in-plane bending; γ denotes out-of-plane bending; τ denotes the CH₃ or OCH₃ group torsion.

Table S2 Observed bands (in cm⁻¹) in the MATI spectra of cis 2NMP and their possible assignments^a

Intermediat	te level in the S_1	state				Cala h	C ala f	Assignment and
τ1	τ2 0(CH ₃)	16b1 0	10b1 0	τ4 0(CH ₃)	6b1 0	- Calc.º	Calc. ^e	approximate description ^d
39		39				69	73	τ1 0(CH ₃)
	72		66	68				τ2 0(CH ₃)
119		122	120			123	121	τ1 0(NHCH ₃)
	177		171			224	222	10b1 0, γ(aryl C-N)
			200					τ2 0(NHCH ₃)
225	240	229	236					10b1 0τ2 0(CH ₃)
				248		239	223	X1 0, β(N-CH ₃)
			283	282				10b1 0τ1 0(NHCH ₃)
			342	342				10b2 0, γ(aryl C-N)
		380				376	377	16b1 0, γ-ring
	440			434		455	461	16a1 0, γ-ring
				496				16a1 0τ2 0(CH ₃)
					513			151 0τ4 0(CH ₃)
					619	586	591	6b1 0, β(C-C-C)
	672							6a1 0τ2 0(CH ₃)

^a Experimental values are represented by the shifts from origin band 62518 cm⁻¹. ^b Calculated at unrestricted HF/CC-pVTZ level, scaled by 0.91. ^c Calculated at unrestricted ω B97XD/CC-pVTZ level, scaled by 0.96. ^d β denotes in-plane bending; γ denotes out-of-plane bending; τ denotes the CH₃ or NHCH₃ group torsion.

Table S3 Observed bands (in cm⁻¹) in the MATI spectra of trans 2NMP and the approximate assignments^a

Intermediate level in the S ₁ state								Cala b	Cala (Assignment and approximate
τ2 0(CH ₃)	X1 0	10b1 0τ1 0(NHCH ₃)	151 0	6a1 0	6b1 0	11 0	121 0	- Calc.º	Calc. ^c	description ^d
79	79									τ2 0(CH ₃)
182										τ2 0(CH ₃)τ1 0(NHCH ₃)
200	199	198								τ2 0(NHCH ₃)
233		229						236	227	10b1 0, γ(aryl C-N)
	242							219	221	X1 0, β(N-CH ₃)
		255								τ1 0(CH ₃)τ2 0(NHCH ₃)
		290						294	304	10b1 0τ1 0(CH ₃)
344		344						377	359	16b1 0, γ-ring
			468					454	461	151 0, β(aryl C-N)
				562	562			549	556	6a1 0, β(C-C-C)
				604	604			587	596	6b1 0, β(C-C-C)
638										6a1 0τ2 0(CH ₃)
682		684								6b1 0τ2 0(CH ₃)
					768					12 0, NHCH ₃ inversion
						803		773	793	110, breathing
	802							768	777	X1 06a1 0
	843							806	817	X1 06b1 0
876										11 0τ2 0(CH ₃)
		948						964	955	16b1 06b1 0
							959	920	945	121 0, β(C-C-C)
							1037	1019	1047	v1 0(N-CH ₃)
				1126						6a2 0
				1165				1136	1152	6a1 06b1 0
				1207						6b2 0

^a Experimental values are represented by the shifts from origin band 62709 cm⁻¹. ^b Calculated at unrestricted HF/CC-pVTZ level, scaled by 0.91. ^c Calculated at unrestricted ω B97XD/CC-pVTZ level, scaled by 0.96. ^d β denotes in-plane bending; γ denotes out-of-plane bending; τ denotes torsional motions of CH₃ or NHCH₃ group.

Table 54 The calculated geometric parameters of 2000 Conformers in the 50, 51 and 50 states

	cis					trans				
	S ₀		S1 ^b	D ₀		S ₀		S1 ^b	D ₀	
	HF	ωB97XD	CIS	UHF	UωB97XD	HF	ωB97XD	CIS	UHF	UωB97XD
Bond Length (Å)										
C1-C2	1.4003	1.4000	1.4234	1.4461	1.4379	1.3931	1.3971	1.4218	1.4476	1.4378
C2-C3	1.3646	1.3736	1.4156	1.3781	1.3728	1.3770	1.3824	1.4096	1.3752	1.3699
C3-C4	1.3950	1.3941	1.3900	1.3924	1.3881	1.3807	1.3844	1.4012	1.3955	1.3923
C4-C5	1.3671	1.3769	1.4176	1.4396	1.4319	1.3790	1.3849	1.4125	1.4411	1.4333
C5-N6	1.3301	1.3366	1.3461	1.2860	1.3029	1.3157	1.3264	1.3356	1.2808	1.2967
N6-C1	1.3011	1.3174	1.3286	1.3416	1.3440	1.3110	1.3233	1.3426	1.3497	1.3528
C1-07	1.3280	1.3411	1.3016	1.2550	1.2840	1.3317	1.3450	1.3034	1.2553	1.2846
07-C8	1.4072	1.4189	1.4171	1.4559	1.4547	1.3976	1.4089	1.4063	1.4444	1.4451
C8-H9	1.0806	1.0898	1.0785	1.0758	1.0862	1.0840	1.0933	1.0815	1.0779	1.0879
C8-H10	1.0806	1.0898	1.0785	1.0758	1.0862	1.0840	1.0933	1.0815	1.0779	1.0879
C8-H11	1.0786	1.0864	1.0776	1.0737	1.0826	1.0780	1.0861	1.0770	1.0737	1.0829
N6…H9	2.6596	2.6291	2.6466	2.7141	2.6850	* c	*	*	*	*
N6…H10	2.6596	2.6291	2.6466	2.7141	2.6850	*	*	*	*	*
Bond Angel (°)										
C1-C2-C3	117.6	117.7	118.8	118.1	118.0	117.7	117.8	119.0	118.2	118.1
C2-C3-C4	119.6	119.4	115.3	117.9	118.0	119.9	119.7	115.5	118.3	118.4
C3-C4-C5	117.4	117.9	120.8	118.8	119.5	117.0	117.5	120.4	118.5	119.2
C4-C5-N6	123.8	123.7	124.7	124.4	123.7	124.0	123.9	124.9	124.2	123.5
C5-N6-C1	118.0	117.6	114.0	117.2	116.6	118.5	118.0	114.6	117.9	117.3
N6-C1-C2	123.5	123.7	126.3	123.6	124.2	122.8	123.1	125.5	122.9	123.5
07-C1-C2	116.6	116.7	115.1	116.3	115.8	123.5	123.7	122.1	123.1	123.4
07-C1-N6	119.9	119.6	118.6	120.1	120.0	113.7	113.3	112.4	114.0	113.0
C8-07-C1	119.0	117.3	120.2	122.8	120.9	120.5	118.6	122.7	125.5	123.2
C8-H9…N6	78.4	78.9	78.6	78.8	79.3	*	*	*	*	*
C8-H10…N6	78.4	78.9	78.6	78.8	79.3	*	*	*	*	*
Dihedral Angle (°,)									
07-C1-C2-C3	180.0	180.0	180.0	180.0	180.0	180.0	180.0	180.0	180.0	180.0
07-C1-N6-C5	180.0	180.0	180.0	180.0	180.0	180.0	180.0	180.0	180.0	180.0
C8-O7-C1-N6	0.0	0.0	0.0	0.0	0.0	180.0	180.0	180.0	180.0	180.0
H9-C8-O7-C1	-60.7	-60.5	-60.6	-60.7	-60.4	-61.3	-61.3	-61.3	-61.5	-61.5
H10-C8-O7-C1	60.7	60.5	60.6	60.7	60.4	61.3	61.3	61.3	61.5	61.5

^a All calculations are performed by using CC-pVTZ as the basis set. For the *trans* 2MOP in the S₁ state, only geometric parameters from CIS calculations are listed. ^b Only geometric parameters from CIS method are available for 2MOP in the S₁ state. ^c Terms replaced by "*" represent parameters becoming meaningless upon the isomerization from *cis* to *trans* 2MOP. For instance, the N6···H9 distance becomes very large in the *trans* 2MOP.

	cis						trans					
	S ₀		S ₁		D ₀		So		S ₁		D ₀	
	HF	ωB97XD	CIS	TD-ωB97XD	UHF	UwB97XD	HF	ωB97XD	CIS	TD-ωB97XD	UHF	UwB97XD
Bond Length (Å)												
C1-C2	1.4067	1.4077	1.4248	1.4004	1.4300	1.4264	1.4000	1.4037	1.4109	1.3928	1.4266	1.4233
C2-C3	1.3645	1.3724	1.4140	1.4332	1.3800	1.3743	1.3726	1.3786	1.4100	1.4308	1.3805	1.3746
C3-C4	1.3932	1.3936	1.3906	1.3900	1.3968	1.3877	1.3851	1.3878	1.4016	1.3972	1.3981	1.3889
C4-C5	1.3696	1.3784	1.4123	1.4101	1.4223	1.4190	1.3770	1.3839	1.4074	1.4058	1.4215	1.4202
C5-N6	1.3255	1.3331	1.3397	1.3607	1.2949	1.3031	1.3167	1.3264	1.3307	1.3576	1.2958	1.3009
N6-C1	1.3135	1.3306	1.3431	1.3434	1.3568	1.3527	1.3219	1.3368	1.3693	1.3602	1.3619	1.3597
C1-N7	1.3668	1.3680	1.3271	1.3637	1.3115	1.3300	1.3648	1.3641	1.3240	1.3571	1.3096	1.3258
N7-C8	1.4442	1.4444	1.4440	1.4369	1.4651	1.4507	1.4384	1.4374	1.4396	1.4341	1.4628	1.4508
N7-H9	0.9901	1.0023	0.9916	1.0065	0.9994	1.0111	0.9909	1.0034	0.9932	1.0091	1.0018	1.0141
C8-H10	1.0855	1.0937	1.0739	1.0845	1.0726	1.0829	1.0832	1.0956	1.0830	1.0919	1.0794	1.0895
C8-H11	1.0792	1.0881	1.0840	1.0921	1.0802	1.0897	1.0875	1.0926	1.0830	1.0919	1.0794	1.0895
C8-H12	1.0814	1.0882	1.0840	1.0921	1.0802	1.0897	1.0804	1.0872	1.0790	1.0856	1.0764	1.0844
N6…H10	2.8564	2.8447	2.3337	2.2671	2.3963	2.3643	* b	*	*	*	*	*
N6…H11	2.6844	2.6583	3.5330	3.5130	3.5570	3.5578	*	*	*	*	*	*
N6…H12	*	*	3.5330	3.5130	3.5570	3.5578	*	*	*	*	2.2861	2.3082
Bond Angel (°)												
C1-C2-C3	118.3	118.5	118.8	117.7	117.9	118.2	118.1	118.2	118.8	117.7	117.5	117.8
C2-C3-C4	119.7	119.5	115.6	115.6	118.5	118.4	120.1	119.8	115.6	115.5	118.9	118.7
C3-C4-C5	117.0	117.5	120.9	121.7	118.9	119.2	116.9	117.4	121.0	121.8	119.0	119.3
C4-C5-N6	124.3	124.3	124.6	123.6	123.7	123.6	124.3	124.2	124.8	123.8	123.3	123.3
C5-N6-C1	118.4	117.9	114.6	113.8	117.8	117.3	118.6	118.0	114.1	113.4	118.0	117.4
N6-C1-C2	122.1	122.3	125.5	127.6	123.2	123.4	122.0	122.3	125.6	127.8	123.4	123.6
N7-C1-C2	119.9	120.4	117.6	117.6	119.6	119.3	122.3	122.2	122.1	121.7	123.0	122.5
N7-C1-N6	118.0	117.3	116.9	114.8	117.2	117.3	115.6	115.5	112.3	110.6	113.7	114.0
C8-N7-C1	121.6	121.5	126.2	125.5	127.5	126.4	123.5	123.7	127.2	126.8	127.8	127.3
C8-N7-H9	116.0	117.1	117.3	118.1	116.1	116.7	117.3	119.1	119.3	120.7	118.3	119.0
C1-N7-H9	115.2	116.1	116.4	116.4	116.4	116.8	113.1	114.1	113.5	112.6	113.9	113.7
C8-H10…N6	73.6	73.6	103.6	105.4	102.2	102.9	*	*	*	*	*	*
C8-H11…N6	82.2	82.9	39.9	39.6	40.5	40.0	*	*	*	*	*	*
N7-H9…N6	*	*	*	*	*	*	73.1	72.6	75.5	76.2	74.4	74.1
Dihedral Angle(°)												
N7-C1-C2-C3	178.4	178.5	180.0	180.0	180.0	180.0	178.3	178.7	180.0	180.0	180.0	180.0
N7-C1-N6-C5	-178.2	-178.2	180.0	180.0	180.0	180.0	-178.4	-178.8	180.0	180.0	180.0	180.0
C8-N7-C1-N6	-13.1	-10.8	0.0	0.0	0.0	0.0	-164.6	-169.7	180.0	180.0	180.0	180.0
C8-N7-C1-H9	149.0	153.7	180.0	180.0	180.0	180.0	-151.7	-160.0	180.0	180.0	180.0	180.0
H10-C8-N7-C1	-59.4	-60.6	0.0	0.0	0.0	0.0	-67.1	-65.6	-60.7	-59.9	-60.7	-60.6
H11-C8-N7-C1	61.3	59.5	120.2	120.3	120.8	120.8	54.9	56.0	60.7	59.9	60.7	60.6

^a All calculations are performed by using CC-pVTZ as the basis set. ^b Terms replaced by "*" represent parameters becoming meaningless upon the cis/trans isomerization.

cis		trans			t-Unreal		
NLMO pair	dE (i.i)	NLMO pair	dE (i.i)	Δc	NLMO pair	dE (i.i)	Δc
2MOP					•		
σ C 1- C 2 : σ Ο 7- C 8	2.96	σ C 1- C 2 : σ Ο 7- C 8	4.03	1.07	σ C 1- C 2 : σ Ο 7- C 8	6.76	3.80
σC1-C2:n(1)N6	11.11	σC1-C2:n(1)N6	9.75	-1.36	σC1-C2:n(1)N6	10.65	-0.46
σC1-C2:n(1)O7	3.53	σC1-C2:n(1)O7	7.24	3.71	σC1-C2:n(1)O7	8.09	4.56
σC1-N6:n(1)O7	8.16	σC1-N6:n(1)O7	3.21	-4.95	σC1-N6:n(1)O7	1.79	-6.37
σ C 1- N 6 : σ C 8- H 9	0.53	σ C 1- C 2 : σ C 8- H 9	0.59	0.06* d	σ C 1- C 2 : σ C 8- Η 9	0.82	0.29*
σ C 1- N 6 : σ C 8- H10	0.53	σ C 1- C 2 : σ C 8- H10	0.59	0.06*	σ C 1- C 2 : σ C 8- H10	0.82	0.29*
σ C 1- N 6 : σ C 8- H11	0.37	σ C 1- C 2 : σ C 8- H11	0.23	-0.14*	σ C 1- C 2 : σ C 8- H11	0.28	-0.09*
σO7-C8:n(1)N6	0.71	σ O 7- C 8 : σ C 2- H12	0.44	-0.27*	σ O 7- C 8 : σ C 2- H12	1.37	0.66*
σ C 8- H 9 : n (1) N 6	2.42	σ C 8- H 9 : σ C 2- H12	2.10	-0.32*	σ C 8- H 9 : σ C 2- H12	5.75	3.33*
σC 8- H10 : n (1) N 6	2.42	σ C 8- H10 : σ C 2- H12	2.10	-0.32*	σ C 8- H10 : σ C 2- H12	5.75	3.33*
σC8-H11 : n (1) N 6	0.22	σ C 8- H11 : σ C 2- H12	0.37	0.15*	σ C 8- H11 : σ C 2- H12	0.80	0.58*
n (1) O 7 : n (1) N 6	0.92	n (1) O 7 : n (1) N 6	1.10	0.18			
2NMP							
σ C 1- C 2 : σ N 7- H 9	2.65	σC1-C2:σN7-H9	5.04	2.39	σ C 1- C 2 : σ N 7- H 9	4.99	2.34
σ C 1- N 6 : σ N 7- C 8	2.81	σC1-N6:σN7-C8	4.05	1.24	σ C 1- N 6 : σ N 7- C 8	3.95	1.14
σ N 7- H 9 : n (1) N 6	0.27	σ N 7- H 9 : n (1) N 6	1.88	1.61	σ N 7- H 9 : n (1) N 6	1.29	1.02
σ C 8- H11 : n (1) N 7	4.65	σC8-H11 : n (1) N 7	6.76	2.11	σ C 8- H11 : n (1) N 7	4.99	0.34
σC1-C2:n(1)N6	11.40	σC1-C2:n(1)N6	9.98	-1.42	σ C 1- C 2 : n (1) N 6	10.48	-0.92
σC1-N6:σN7-H9	5.63	σC1-N6:σN7-H9	3.02	-2.61	σC1-N6:σN7-H9	2.19	-3.44
σ C 1- N 6 : σ C 8- H11	0.38	σ C 1- C 2 : σ C 8- H10	0.23	-0.15*	σ C 1- C 2 : σ C 8- H10	0.24	-0.14*
σ C 1- N 6 : σ C 8- H12	0.37	σ C 1- C 2 : σ C 8- H11	0.22	-0.15*	σ C 1- C 2 : σ C 8- H11	0.41	0.04*
σ N 7- C 8 : n (1) N 6	0.94	σ C 2- H13 : σ N 7- C 8	0.47	-0.47*	σ C 2- H13 : σ N 7- C 8	0.69	-0.25*
σC8-H10:n(1)N6	0.95	σ C 2- H13 : σ C 8- H10	0.98	0.03*	σ C 2- H13 : σ C 8- H10	1.08	0.13*
σC8-H11:n(1)N6	2.31	σ C 2- H13 : σ C 8- H11	1.47	-0.84*	σ C 2- H13 : σ C 8- H11	3.11	0.80*
σC8-H12:n(1)N6	0.25	σ C 2- H13 : σ C 8- H12	0.32	0.07*	σ C 2- H13 : σ C 8- H12	0.43	0.18*

^a The dE (i,j) describes pairwise steric exchange interactions. Symbols "i" and "j" stand for the two NLMOs interacting with each other, respectively. ^b Only important "disjoint" pairs of NLMOs (i.e., sharing no common atom) are listed here. ^c This column shows the dE (i,j) difference between the *trans* (equilibrium and *t-Unreal*) conformers and the corresponding *cis* conformers. ^d Due to the conformational conversion, the asterisked data (being marked with "*") showing the denotation of dE (i,j) in *cis* conformer are different from those of the *trans* and corresponding *t-Unreal* species.

Table S7 The hyperconjugation interactions between methyl σ C-H and SOMO orbitals on O7 (2MOP) and N7 (2NMP) atoms

s-ris		e-cic	
2MOP			
BD(1)C8-H9:BD*(2)C1-O7 ^a	1.42	BD(1)C8-H10:BD*(2)C1-O7	1.83
BD(1)C8-H10:BD*(2)C1-O7	1.40	BD(1)C8-H11:BD*(2)C1-O7	1.83
BD*(2)C1-O7:BD*(1)C8-H9	0.15	BD*(2)C1-O7:BD*(1)C8-H10	0.10
BD*(2)C1-O7:BD*(1)C8-H10	0.14	BD*(2)C1-O7:BD*(1)C8-H11	0.10
Sum	3.11		3.86
2NMP			
BD(1)C8-H10:BD*(2)C1-N7	3.23	BD(1)C8-H11:BD*(2)C1-N7	3.60
BD(1)C8-H11:BD*(2)C1-N7	3.15	BD(1)C8-H12:BD*(2)C1-N7	3.60
BD*(2)C1-N7:BD*(1)C8-H10	0.22	BD*(2)C1-N7:BD*(1)C8-H11	0.19
BD*(2)C1-N7:BD*(1)C8-H11	0.21	BD*(2)C1-N7:BD*(1)C8-H12	0.19
Sum	6.81		7.58
^a The term BD*(2)C1-O7 represents an unoccupie	ed π -symmetry orbital on O7 at	om formed by ionizing from the lone-pair perpendicul	ar to the pyridine ring.