Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Supporting Information for:

Computational Identification of the Binding Mechanism of Triple Reputake Inhibitor Amitifadine for the Treatment of Major Depressive Disorder

Weiwei Xue^{a,b}, Panpan Wang^{a,b}, Tu Gao^{a,b}, Fengyuan Yang^{a,b}, Guoxun Zheng^{a,b}, Xiaofeng Li^{a,b},

Xiaoxu Li^{a,b}, Yuzong Chen^c, Xiaojun Yao^d and Feng Zhu^{a,b,*}

- ^a Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- ^b Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
- ^c Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
- ^d State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
- * Corresponding Author:

Prof. Feng Zhu (zhufeng.ns@gmail.com; zhufeng@zju.edu.cn), Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.

Supplementary (SI) Tables

			Activity		_	Highest	
Drug	Structure	SERT	NET	DAT	Company	Clinical Phase	
Amitifadine		12	23	96	DOV Pharma ceutical; Euthymics Bioscience	Phase 3	
Ansofaxine	O O O O O O O O O O O O O O O O O O O	723	763	491	Luye Pharma	Phase 2	
DOV 216,303	CI CI NH	14	20	78	DOV Pharmaceutical	Phase 2	
GSK372475		10	2	10	NeuroSearch; Saniona	Phase 2	
Liafensine	H ₂ N N	1.1	8.8	5.7	AMRI Global; Bristol-Myers Squibb	Phase 2	
SEP-225289		12	4	2	Sepracor; Sunovion	Phase 2	
GSK1360707	HN OMe	9.2	8.1	8	GSK	Phase 1	
RG-7166	HN	16	9	90	Roche	Phase 1	

Table S1. List of TRIs in clinical trial for MDD treatment with structure available.

Targets	Trajectories	ΔE_{ele}	ΔE_{vdW}	$\Delta E_{pol,PB}$	$\Delta E_{nonpol,PB}$	ΔG_{ca}	lc,PBa	$\Delta\Delta G_{calc,PB}_{b}$	$\Delta E_{pol,GB}$	$\Delta E_{nonpol,GB}$	ΔG_{cal}	c,GBa	$\Delta\Delta G_{calc,GB^b}$
	100~150ns	-32.36	-36.68	25.99	-3.92	-46.97		0	32.24	-3.85	-40.65		0
LCEDT	200~250ns	-34.16	-36.91	26.00	-3.88	-48.95	_		33.67	-3.78	-41.19	_	
IISEKI	200~250ns	-34.88	-36.81	27.04	-3.90	-48.55	-48.32	0	34.43	-3.85	-41.11	-41.22	0
	200~250ns	-33.85	-36.28	26.58	-3.89	-47.45	-		32.66	-3.88	-41.35		
	100~150ns	-44.90	-32.74	35.37	-3.83	-46.10		0.87	43.06	-3.92	-38.50		2.15
LNET	200~250ns	-42.67	-32.98	34.66	-3.93	-44.91			41.27	-3.94	-38.32	_	
IIINE I	200~250ns	-43.15	-31.72	36.87	-4.00	-42.01	-43.34	4.98	41.94	-3.92	-36.86	-37.73	3.49
	200~250ns	-45.46	-32.62	38.90	-3.93	-43.10			44.04	-3.96	-38.00		
	100~150ns	-67.26	-32.54	59.43	-3.78	-44.15		2.82	65.02	-3.82	-38.59		2.06
ЬДАТ	200~250ns	-67.04	-33.09	57.32	-3.73	-46.54			-65.47	-3.81	-38.47	_	
IIDAT	200~250ns	-67.26	-32.54	59.43	-3.78	-44.15	-45.35	2.97	65.02	-3.82	-38.59	-38.74	2.63
	200~250ns	-64.83	-34.40	57.65	-3.78	-45.36			63.85	-3.78	-39.16		

Table S2. The calculated binding free energies of studied amitifadine binding to hSERT, hNET and hDAT (Energy is in kcal/mol).

^{*a*} Calculated binding energy by MM/GB(PB)SA method in this work. ^{*b*} Binding free energy variation were calculated using amitifadine-hSERT complex as a reference.

	hSERT(dDAT) ^a				hNET(dDAT) ^a				hDAT(dDAT) ^a			
	Whole structure		S1 binding site ^b		Whole structure		S1 binding site ^b		Whole structure		S1 binding site ^b	
	Identity	RMSD	Identity	RMSD	Identity	RMSD	Identity	RMSD	Identity	RMSD	Identity	RMSD
hSERT (crystal structure) ^c		8.06		2.50	54%		62%		52%		57%	
hNET (hSERT) ^d	54%		62%			6.62		1.26	71%		85%	
hDAT (hSERT) ^d	52%		57%		71%		85%			5.24		1.31
dDAT(crystal structure) ^e	56%		67%		61%		76%		55%		69%	

Table S3. Comparison of homology models (hSERT, hNET and hDAT) and crystal structures (hSERT and dDAT).

^{*a*} Homology model of hSERT, hNET and hDAT using the dDAT crystal structure¹ as a template.

^b The S1 binding site is primary surrounded by TM1, 3, 6, 8 and 10 regions (see in Figure S3, S10 and S11).

^c Crystal structure of hSERT².

^c Homology model of hNET and hDAT using the hSERT crystal structure² as a template.

^{*d*} Crystal structure of dDAT¹.

	Amitifadine-hSERT				Amitifadine-hN	JET	Amitifadine-hDAT			
Number ^a	Residue	$\Delta G^{per-residue}_{calc,GB}$	$\Delta G^{per-residue}_{calc,PB}$	Residue	$\Delta G^{per-residue}_{calc,GB}$	$\Delta G^{per-residue}_{calc,PB}$	Residue	$\Delta G^{per-residue}_{calc,GB}$	$\Delta G^{per-residue}_{calc,PB}$	
19	Tyr95	-4.30	-6.13	Phe72	-3.79	-5.97	Phe76	-3.22	-5.19	
22	Asp98	-3.04	-12.38	Asp75	-2.87	-14.23	Asp79	-3.69	-13.57	
93	Ala169	-0.60	-0.87	Ala145	-0.63	-0.39	Ser149	-0.53	-0.52	
96	Ile172	-1.63	-0.84	Val148	-1.55	-0.91	Val152	-1.02	-0.9	
100	Tyr176	-1.71	-0.01	Tyr152	-1.66	-1.27	Tyr156	-1.47	-0.35	
265	Phe335	-0.30	0.03	Phe317	-1.00	-2.47	Phe320	-1.02	-2.15	
266	Ser336	-1.03	-1.93	Ser318	-0.54	-2.03	Ser321	-1.12	-2	
271	Phe341	-1.93	-0.88	Phe323	-1.90	-1.8	Phe326	-2.28	-1.99	
368	Ser438	-1.01	-0.03	Ser419	-1.43	-0.56	Ser422	-1.98	-0.15	
369	Thr439	-1.31	-1.26	Ser420	-1.00	-1.57	Ala423	-0.37	-0.52	
372	Gly442	-0.87	0.44	Gly423	-0.61	0.47	Gly426	-0.55	-0.18	
a	The	number	used	in	the	hierarchi	ical	clustering	analysis.	

Table S4. The energy contributions of hot spot residues for amitifadine binding in hSERT, hNET and hDAT (Energies are in kcal/mol).

Table S5. The energy change $(\Delta\Delta G^{per-residue}_{calc,GB})$ of corresponding residues in S1 site of hSERT, hNET and hDAT contribute to amitifadine binding (Energies

are in kcal/mol)

hSERT-hNET	$\Delta\Delta G^{per-residue}_{calc,GB}$	hSERT-hDAT	$\Delta\Delta G^{per-residue}_{calc,GB}$	hDAT-hNET	$\Delta\Delta G^{per-residue}_{calc,GB}$
Tyr95-Phe72	-0.51	Tyr95-Phe76	-1.08	Phe76-Phe72	0.57
Asp98-Asp75	-0.06	Asp98-Asp79	-0.07	Asp79-Asp75	0.01
Ala96-Ala73	-0.17	Ala96-Ala77	0.65	Ala77-Ala73	-0.82
Glu136-Glu113	-0.01	Glu136-Glu117	-0.01	Glu117-Glu113	0.00
Ala169-Ala145	0.03	Ala169-Ser149	-0.07	Ser149-Ala145	0.10
Ile172-Val148	-0.08	Ile172-Val152	-0.61	Val152-Val148	0.53
Ala173-Gly149	-0.09	Ala173-Gly153	-0.20	Gly153-Gly149	0.11
Tyr176-Tyr152	-0.05	Tyr176-Tyr156	-0.24	Tyr156-Tyr152	0.19
Phe335-Phe317	0.70	Phe335-Phe320	0.72	Phe320-Phe317	-0.02
Ser336-Ser318	-0.49	Ser336-Ser321	0.09	Ser321-Ser318	-0.58
Leu337-Leu319	-0.19	Leu337-Leu322	-0.10	Leu322-Leu319	-0.09
Gly338-Gly320	-0.23	Gly338-Gly323	-0.18	Gly323-Gly320	-0.05
Pro339-Ala321	-0.11	Pro339-Val324	-0.09	Val324-Ala321	-0.02
Phe341-Phe323	-0.03	Phe341-Phe326	0.35	Phe326-Phe323	-0.38
Val343-Val325	0.00	Val343-Val328	-0.01	Val328-Val325	0.01
Asp437-Asp418	-0.02	Asp437-Asp421	0.10	Asp421-Asp418	-0.12
Ser438-Ser419	0.42	Ser438-Ser422	0.97	Ser422-Ser419	-0.55
Thr439-Ser420	-0.31	Thr439-Ala423	-0.94	Ala423-Ser420	0.63
Gly442-Gly423	-0.26	Gly442-Gly426	-0.32	Gly426-Gly423	0.06
Leu443-Met424	-0.20	Leu443-Met427	-0.34	Met427-Met424	0.14

Table S6. The calculated binding energy changes of amitifadine-hSERT complexes before and after hNET-like or hDAT-like hSERT by *in silico* single and multiple mutagenesis studies (ΔG is in kcal/mol)

Target	Mutations			Experimental value				
Target	Wittations	ΔE_{ele}	ΔE_{vdW}	$\Delta G_{pol,GB}$	$\Delta G_{nonpol,GB}$	ΔG_{calc}	$\Delta\Delta G_{calc,GB^a}$	$\Delta\Delta G_{exp^{d}}$
– hNET-like –	Y95F	-25.38	-34.59	24.97	-3.87	-38.87	1.78	
	I172V	-26.59	-33.88	25.98	-3.81	-38.30	2.35	2.15
	T439S	-27.58	-33.91	26.63	-3.78	-38.64	2.01	2.15
	Y95F-I172V-T439S	-30.65	-33.39	30.17	-3.86	-37.72	2.93	
hDAT-like	Y95F	-25.38	-34.59	24.97	-3.87	-38.87	1.78	
	A169S	-26.71	-34.14	26.25	-3.86	-38.46	2.19	
	I172V	-26.59	-33.88	25.98	-3.81	-38.30	2.35	2.06
	T439A	-32.34	-34.79	24.75	-3.88	-38.35	2.30	
	Y95F-I172V-A169S-T439S	-31.23	-32.16	29.62	-3.74	-37.51	3.14	

 $\overline{{}_{a}\Delta\Delta G_{cal}} = \Delta G_{mutation} - \Delta G_{wild type} \text{ (the } \Delta G_{wild type} \text{ of complex was listed in$ **Table 2**and**SI**,**Table S2** $).}$ ${}_{b}\Delta\Delta G_{exp} \text{ were derived from the } {}^{FC}_{exp} \text{ by the equation } \Delta\Delta G_{exp} = RTln(FC_{exp}).$

		TM1	TM2
hSERT dDAT hNET hDAT	78 26 54 58	GERETWGKKVDFLLSVIGYAVDLGNVWRFPYICYQNG DERETWSGKVDFLLSVIGFAVDLANVWRFPYLCYKNG QPRETWGKKIDFLLSVVGFAVDLANVWRFPYLCYKNG QDRETWGKKIDFLLSVIGFAVDLANVWRFPYLCYKNG	GGAFLLPYTIMAIFGGIPLFYME GGAFLVPYGIMLAVGGIPLFYME GGAFLIPYTLFLIIAGMPLFYME GGAFLVPYLLFMVIAGMPLFYME
		****. *:*****:*:*:****.*******	*****:** ::*:****** TM3
hSERT dDAT		LALGOYHRNGCISIWRKICPIFKGIGYAICIIAFYIA LALGOHNRKGAITCWGRLVPLFKGIGYAVVLIAFYVD	SYYNTIMAWALYYLISSFTDQLP FYYNVIIAWSLRFFFASFTNSLP
hDAT		LALGQINREGAAIVWK-ICPFFKGVGIAVILIALIVG LALGQFNREGAAGVWK-ICPILKGVGFTVILISLYVG ******:*. * : *::**:*::::::::::::	FFYNVIIAWSLIILFSSFILNLP FFYNVIIAWALHYLFSSFITELP :**.*:**:* ::::*** .**
hSERT dDAT hNET hDAT		WTSCKNSWNTGNCTNYFSEDNITWTLHSTSP WTSCNNIWNTPNCRPFESQGFQSA WTDCGHTWNSPNCTDPKLLNGSVLGNHTKYSKYKFTP WIHCNNSWNSPNCSDAHPGDSSG-DSSGLNDTFGTTP * * . **: **	AEEFYTRHVLQIHRSKGLQDLGG ASEYFNRYILELNRSEGIHDLGA AAEFYERGVLHLHESSGIHDIGL AAEYFERGVLHLHQSHGIDDLGP * *:: * :*.:* *:.**
hSERT		ISWQLALCIMLIFTVIYFSIWKGVKTSGKVVWVTATF	PYIILSVLLVRGATLPGAWRGVL
dDAT hNET hDAT		IKWDMALCLLIVYLICYFSLWKGISTSGKVVWFTALF PQWQLLLCLMVVVIVLYFSLWKGVKTSGKVVWITATL PRWQLTACLVLVIVLLYFSLWKGVKTSGKVVWITATM	PYAALLILLIRGLTLPGSFLGIQ PYFVLFVLLVHGVTLPGASNGIN PYVVLTALLLRGVTLPGAIDGIR
		*:: *:::: : ***:***:.****:****:** TM6	** * **::* ****: *: TM7
hSERT dDAT hNET hDAT		FYLKPNWQKLLETGVWIDAAAQIFFSLGPGFGVLLAF YYLTPNFSAIYKAEVWADAATQVFFSLGPGFGVLLAY AYLHIDFYRLKEATVWIDAATQIFFSLGAGFGVLIAF AYLSVDFYRLCEASVWIDAATQVCFSLGVGFGVLIAF	ASYNKFNNNCYQDALVTSVVNCM ASYNKYHNNVYKDALLTSFINSA ASYNKFDNNCYRDALLTSSINCI SSYNKFTNNCYRDAIVTTSINCL
		TM7	TM8
hSERT dDAT hNET hDAT		TSFVSGFVIFTVLGYMAEMRNEDVSEVAKDAGPSLLF TSFIAGFVIFSVLGYMAHTLGVRIEDVAT-EGPGLVF TSFVSGFAIFSILGYMAHEHKVNIEDVAT-EGAGLVF TSFSSGFVVFSFLGYMAQKHSVPIGDVAK-DGPGLIF *** :**.:*:.****. : :**. * .*:* TM8	ITYAEAIANMPASTFFAIIFFLM VVYPAAIATMPASTFWALIFFMM ILYPEAISTLSGSTFWAVVFFVM IIYPEAIATLPLSSAWAVVFFIM * **:.: *::*:** TM9 TM10
hSERT		LITLGLDSTFAGLEGVITAVLDEFPHVWAKRRERFVI	AVVITCFFGSLVTLTFGGAYVVK
dDAT		LATIGLDSSFGGSEAIITALSDEFPKIK-RNRELFVA	GLFSLYFVVGLASCTQGGFYFFH
hDAT		LLTLG-DSAMGGMEAVIIGLADDFQVLK-RHRRLFIF LLTLG-DSAMGGMESVIIGLIDEFQLLH-RHRRLFIL * :** **::.* *.:**: :::*: :.*: *. TM10	FIVLATFLLSLFCVINGGIVVFT : ** * ** * TM11
hSERT		LLEEYATGPAVLTVALIEAVAVSWFYGITOFCRDVKE	MLGFSPGWFWRICWVAISPLFLL
dDAT hNET hDAT		LLDRYAAGYSILVAVFFEAIAVSWIYGTNRFSEDIRD LLDTFAAGTSILFAVLMEAIGVSWFYGVDRFSNDIQQ LLDHFAAGTSILFGVLIEAIGVAWFYGVGQFSDDIQQ **: :*:* ::* .::*::*:*:*:** :*. *::*	MIGFPPGRYWQVCWRFVAPIFLL MMGFRPGLYWRLCWKFVSPAFLL MTGQRPSLYWRLCWKLVSPCFLL * * *.:*::** ::* *** TM12
hSERT dDAT hNET hDAT		FIICSFLMSPPQLRLFQYNYPYWSIILGYCIGTSSFI FITVYLLIGYEPLTYADYVYPSWANALGWCIAGSSVV FVVVVSIINFKPLTYDDYIFPPWANWVGWGIALSSMV FVVVVSIVTFRPPHYGAYIFPDWANALGWVIATSSMA *: :: * *: *: *: *. **.	CIPTYIAYRLIITPGTFKERIIK MIPAVAIFKLLSTPGSLRQRFTI LVPIYVIYKFLSTQGSLWERLAY MVPIYAAYKFCSLPGSFREKLAY :* ::: *:: :::
hSERT dDAT hNET hDAT		SITPETP 617 LTTPWRD 599 GITPENE 597 AIAPEKD 600	

Figure S1. Sequence alignment of hSERT (from Glu78 to Pro617), hNET (from Gln54 to Glu597) and dDAT (from Glu26 to Asp599) using ClustalW2 program³. The twelve transmembrane (TM1 to TM12) alpha helices are labeled above the sequence. Stars refer to the identical residues, the double filled periods refer to the conservative substitutions and the filled periods refer to the variable conservative substitutions.

Figure S2. Ramachandran plot of the (A) hSERT, (B) hNET and (C) hDAT models. 99.6%, 99.8% and 99.8% amino acids in the hSERT, hNET and hDAT models locate in the allowed zone.

Figure S3. Structural superimposition between the crystal structure of hSERT (PDB code 5I6Z) and thehomology model on the basis of the dDAT crystal structure (PDB code 4M48) as a template. The crystaland homology model structures of hSERT are shown in cartoon representation in light blue and light pink,respectively.TheproteinswerevisualizedusingPyMOL4.

Figure S4. Docking poses of amitifadine in the binding pocket of the modeled (A) hSERT, (B) hNET and hDAT. The hSERT (gray) and hNET (light pink) and hDAT (light blue) were shown in ribbon representation. Amitifadine was shown as cyan stick. The protein-ligand complexes were visualized using PyMOL⁴.

Figure S5. RMSD of the protein backbone atoms and ligand heavy atoms as a function of time during MD simulations.

Figure S6. Structural superimposition between the docking poses (gray) and MD results (light brown) of amitifadine in (A) hSERT, (B) hNET and (C) hDAT. The protein-ligand complexes were visualized using PyMOL⁴.

Figure S7. RMSD of the protein backbone atoms and ligand heavy atoms as a function of time during additional 50 ns MD simulations.

Figure S8. (A) Structures of amitifadine and 3,4-dichlorophenethylamine. Colors highlight the common features. (B-C) The overlay of representative snapshots of hSERT (gray), hNET (light pink) and hDAT (light blue) bound with amitifadine onto the crystal structure of dDAT in complex with 3,4-dichlorophenethylamine. The proteins are shown as carton. The TM regions are labeled as discussed in the text. The protein-ligand complexes were visualized using PyMOL⁴.

Figure S9. Per-residue contributions (MM/PBSA) of binding energies of the three studied protein-ligand complexes.

Figure S10. Structural superimposition between the homology model structures of hNET on the basis of the hSERT (PDB code 5I6Z) and dDAT (PDB code 4M48) crystal structured as the template. The two homology model structures of hNET are shown in cartoon representation in light blue and light pink, respectively. The proteins were visualized using PyMOL⁴.

Figure S11. Structural superimposition between the homology model structures of hDAT on the basis of the hSERT (PDB code 5I6Z) and dDAT (PDB code 4M48) crystal structured as the template. The two homology model structures of hNET are shown in cartoon representation in light blue and light pink, respectively. The proteins were visualized using PyMOL⁴.

References

- 1. A. Penmatsa, K. H. Wang and E. Gouaux, *Nature*, 2013, **503**, 85-90.
- 2. J. A. Coleman, E. M. Green and E. Gouaux, *Nature*, 2016, **532**, 334-339.
- M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson and D. G. Higgins, *Bioinformatics*, 2007, 23, 2947-2948.
- 4. PyMOL Molecular Graphics System v. 1.3, Schrödinger, LLC.