What Does It Take to Induce Equilibrium in Bidirectional Energy Transfers?

Di Gao, Shawkat M. Aly, Paul-Ludovic Karsenti, and Pierre D. Harvey

Table of Content

	Page
Figure S1. ¹ H NMR spectrum of 3 in CD ₂ Cl ₂ .	3
Figure S2. ¹ H NMR spectrum of 4 in CD ₂ Cl ₂ .	3
Figure S3. ¹ H NMR spectrum of 5 in CD_2Cl_2 .	4
Figure S4. ¹ H NMR spectrum of 1 in CD ₂ Cl ₂ .	4
Figure S5. ¹ H NMR spectrum of 1 in CD_2Cl_2 .	5
Figure S6. ¹ H NMR spectrum of 2 in CD_2Cl_2 .	5
Figure S7. ¹ H NMR spectrum of 2 in CD_2Cl_2 .	6
Figure S8. MALDI-TOF spectrum of 3 .	6
Figure S9. MALDI-TOF spectrum of 4.	7
Figure S10. MALDI-TOF spectrum of 5 .	7
Figure S11. MALDI-TOF spectrum of 1.	8
Figure S12. MALDI-TOF spectrum of 2 .	8
Figure S13. Absorption, fluorescence, and excitation spectra of 5 , 8 , 9 , 1 and 2 in 2MeTHF at 77K	9
Figure S14. Decay of emission intensity (black), fit (red), IRF (blue), residual (green) and lifetime distribution (orange) of 5 . Left, at 298 K, $\lambda = 675$ nm, τ_e {B}= 2.05 ns {0.0192}, $\chi^2 = 1.09$. Right, at 77 K, $\lambda = 443$ nm, τ_e {B} = 2.51 ns {0.0118}, $\chi^2 = 1.04$.	10
Figure S15. Decay of emission intensity (black), fit (red), IRF (blue), residual (green) and lifetime distribution (orange) of 8. Left, at 298 K, $\lambda = 666$ nm, τ_e {B}= 10.81 ns {0.0712}, $\chi^2 = 1.09$. Right, at 77 K, $\lambda = 662$ nm, τ_e {B} = 12.88 ns {0.0677}, $\chi^2 = 1.09$.	10
Figure 16. Decay of emission intensity (black), fit (red), IRF (blue), residual (green) and lifetime distribution (orange) of 9 . Left, at 298 K, $\lambda = 739$ nm, τ_e {B}= 11.05 ns {0.0712}, $\chi^2 = 1.08$. Right, at 77 K, $\lambda = 648$ nm, τ_e {B} = 13.42 ns {0.0696}, $\chi^2 = 1.06$.	10
Figure 17. Decay of emission intensity (black), fit (red), IRF (blue), residual (green) and lifetime distribution (orange) of 1 . Left, at 298 K, $\lambda = 671$ nm, τ_e {B}= 1.86 ns {0.0161}, 5.30 ns {0.0008}, $\chi^2 = 1.05$. Right, at 77 K, $\lambda = 668$ nm, τ_e {B} = 0.11 ns {0.0159}, 4.66 ns {0.0160} 8.91 ns {0.0250}, $\chi^2 = 1.00$.	11
Figure 18. Decay of emission intensity (black), fit (red), IRF (blue), residual (green) and lifetime distribution (orange) of 2 . Left, at 298 K, $\lambda = 657$ nm, τ_e {B}= 0.10 ns {0.0123}, 3.06 ns {0.0606} 6.31 ns {0.0170}, $\chi^2 = 1.06$. Right, at 77 K, $\lambda = 668$ nm, τ_e {B} = 0.04 ns {0.0695}, 2.71 ns {0.0202} 11.5 ns {0.0436}, $\chi^2 = 1.07$.	11
Figure S19. Geometry optimization of 1 (DFT; B3LYP). Left: side view; right: top view.	11
Figure S20. Representation of the frontier MOs of 1. Energy in eV.	12
Table S1. Computed positions, major contributions and oscillator strength of the first 100 electronic transitions of 2	13
Figure S22. Geometry optimization of 2 . Top: side view; bottom: top view.	16

Figure S23. Representation of the frontier MOs of 2 .	17
Table S2. Computed positions, major contributions and oscillator strength of the first 100 electronic transitions of 2 .	18
Figure S24. Bar graph reporting the calculated oscillator strength and calculated position of the 100^{st} electronic transitions calculated by TDDFT for 2 .	20
Figure S25. Time evolution of 1 of the fs-TAS in 2MeTHF at 298 K.	21
Figure S26. Time evolution of $\Delta T/T$ for 1 in 2MeTHF at 298 K for various monitored wavelengths.	21
Figure S27. Time evolution of the fs-TAS 2 in 2MeTHF at 298 K.	22
Figure S28. Time evolution of $\Delta T/T$ for 2 in 2MeTHF at 298 K for various monitored wavelengths.	22
Figure S29. Time evolution of the fluorescence spectra of 1 in 2MeTHF at 298 K.	23
Figure S30. Time evolution of the fluorescence intensity of 1 in 2MeTHF at 298 K monitored at various wavelengths.	23
Figure S31. Time evolution of the fluorescence spectra of 1 in 2MeTHF at 77 K.	24
Figure S32. Time-deconvoluted spectra of 1 in 2 MeTHF at 77 K	24
Figure S33. Time evolution of the fluorescence intensity of 1 in 2MeTHF at 77 K monitored at various wavelengths.	25
Figure S34. Time evolution of the fluorescence spectra of 2 in 2MeTHF at 298 K.	25
Figure S35. Time evolution of the fluorescence intensity of 2 in 2MeTHF at 298 K monitored at various wavelengths.	26
Figure S36. Time evolution of the fluorescence spectra of 2 in 2MeTHF at 77 K.	26
Figure S37. Time-deconvoluted spectra of 2 in 2-MeTHF at 77 K.	27
Figure S38. Time evolution of the fluorescence spectra of 2 in 2MeTHF at 77 K monitored at various wavelengths.	27
Figure 39. Sum of the absorption spectra of $5 + 8$, and $5 + 9$ (top), compared to those for 1 and 2.	28
Figure 40. Schematic representations of the four possible conformations of dyads 1 and 2.	28

Figure S1. ¹H NMR spectrum of **3** in CD₂Cl₂.

Figure S2. ¹H NMR spectrum of **4** in CD₂Cl₂.

Figure S4. ¹H NMR spectrum of **1** in CD₂Cl₂.

Figure S5. ¹H NMR spectrum of **1** in CD₂Cl₂.

10.28 10.22

Figure S6. ¹H NMR spectrum of **2** in CD₂Cl₂.

Figure S7. ¹H NMR spectrum of **2** in CD₂Cl₂.

Figure S8. MALDI-TOF spectrum of **3**.

Figure S9. MALDI-TOF spectrum of 4.

Figure S10. MALDI-TOF spectrum of 5.

Figure S11. MALDI-TOF spectrum of 1.

Figure S12. MALDI-TOF spectrum of 2.

Figure S13. Absorption (black), fluorescence (blue), and excitation (red) spectra of 5, 8, 9, 1 and 2 in 2MeTHF at77 K (R = n-octyl, Ar = di-3,5-t-butylbenzene).

Figure S14. Decay of emission intensity (black), fit (red), IRF (blue), residual (green) and lifetime distribution (orange) of **5**. Left, at 298 K, $\lambda = 675$ nm, $\tau_e \{B\} = 2.05$ ns (standard deviation) {0.0192}, $\chi^2 = 1.09$. Right, at 77 K, $\lambda = 443$ nm, $\tau_e \{B\} = 2.51$ ns {0.0118} (0.150), $\chi^2 = 1.04$.

Figure S15. Decay of emission intensity (black), fit (red), IRF (blue), residual (green) and lifetime distribution (orange) of **8**. Left, at 298 K, $\lambda = 666$ nm, τ_e {B}= 10.81 ns (standard deviation) {0.0712} (0.980), $\chi^2 = 1.09$. Right, at 77 K, $\lambda = 662$ nm, τ_e {B} = 12.88 ns {0.0677} (0.841), $\chi^2 = 1.09$.

Figure 16. Decay of emission intensity (black), fit (red), IRF (blue), residual (green) and lifetime distribution (orange) of **9**. Left, at 298 K, $\lambda = 739$ nm, τ_e {B} (standard deviation) = 11.05 ns {0.0712} (1.056), $\chi^2 = 1.08$. Right, at 77 K, $\lambda = 648$ nm, τ_e {B} = 13.42 ns {0.0696} (1.969), $\chi^2 = 1.06$.

Figure 17. Decay of emission intensity (black), fit (red), IRF (blue), residual (green) and lifetime distribution (orange) of **1**. Left, at 298 K, $\lambda = 671$ nm, τ_e {B}= 1.86 ns {0.0161}, 5.30 ns {0.0008}, $\chi^2 = 1.05$. Right, at 77 K, $\lambda = 668$ nm, τ_e {B} (standard deviation) = 0.11 ns {0.0159} (0.003), 4.66 ns {0.0160} (0.255) 8.91 ns {0.0250} (0.686), $\chi^2 = 1.00$.

Figure 18. Decay of emission intensity (black), fit (red), IRF (blue), residual (green) and lifetime distribution (orange) of **2**. Left, at 298 K, $\lambda = 657$ nm, τ_e {B}= 0.10 ns {0.0123}, 3.06 ns {0.0606} 6.31 ns {0.0170}, $\chi^2 = 1.06$. Right, at 77 K, $\lambda = 668$ nm, τ_e {B} (standard deviation) = 0.04 ns {0.0695} (0.005), 2.71 ns {0.0202} (0.401), 11.5 ns {0.0436} (2.728), $\chi^2 = 1.07$.

Figure S19. Geometry optimization of 1 (DFT; B3LYP). Left: side view; right: top view. The interplanar dihedral angles and centre-to-centre distances are placed in the text.

Figure S20. Representation of the frontier MOs of 1. Energy in eV.

	× ×	,	
No.	Wavelength (nm)	Osc. Strength	Major Contribs (%)
1	609.8	0.3197	H-5→LUMO (11), H-5→L+1 (10), HOMO→LUMO (48), HOMO→L+1 (15)
2	584.1	0.2139	H-5→LUMO (17), H-2→L+1 (11), HOMO→LUMO (36), HOMO→L+1 (25)
3	559.9	0.0083	H-1→LUMO (52), H-1→L+2 (12)
4	556.1	0.0167	H-2→LUMO (43)
5	549.8	0.0039	H-1→LUMO (25), HOMO→L+2 (20), HOMO→L+3 (18)
6	545.7	0.0066	H-2→LUMO (20), H-1→L+3 (16), HOMO→L+2 (12), HOMO→L+3 (15)
7	543.5	0.0016	H-1 \rightarrow L+2 (11), HOMO \rightarrow L+2 (11), HOMO \rightarrow L+4 (22)
8	539.2	0.0014	H-1→L+3 (14), H-1→L+4 (20), HOMO→L+5 (16)
9	533.5	0.003	H-1→L+2 (23), HOMO→L+3 (15), HOMO→L+4 (19)
10	529.8	0.0043	H-2→L+5 (10), H-1→L+3 (16), HOMO→L+4 (14), HOMO→L+5 (35)
11	520.5	0.003	H-1→L+2 (10), H-1→L+3 (24), H-1→L+4 (38)
12	518.7	0.0054	H-1→L+2 (14), H-1→L+5 (57)
13	511.7	0.0042	H-4→LUMO (20), H-3→LUMO (60)
14	510.1	0.0026	H-2→L+1 (51), HOMO→L+1 (40)
15	504.0	0.0024	H-4→LUMO (61), H-3→LUMO (19)
16	500.2	0.0001	H-1→L+1 (95)
17	490.8	0.0951	H-2→L+2 (33), HOMO→L+2 (16)
18	487.5	0.011	H-4→L+3 (21), H-3→L+2 (10), H-3→L+4 (13), H-2→L+2 (16)
19	483.7	0.0007	H-4→L+2 (14), H-4→L+4 (34), H-3→L+3 (19), H-3→L+5 (23)
20	482.9	0.0045	$H-4 \rightarrow L+5 (11), H-3 \rightarrow L+4 (15), H-2 \rightarrow L+2 (13), H-2 \rightarrow L+3 (24), HOMO \rightarrow L+3 (10)$
21	481.5	0.0049	H-4→L+2 (24), H-4→L+3 (10), H-3→L+3 (11), H-3→L+5 (16)
22	480.1	0.0047	H-4→L+5 (31), H-3→L+2 (10), H-3→L+4 (15), H-2→L+3 (26)
23	471.8	0.0005	H-2→L+4 (58), HOMO→L+4 (21)
24	468.1	0.0002	H-3→L+1 (97)
25	467.4	0.0181	H-2→L+5 (60), HOMO→L+5 (24)
26	461.8	0.0002	H-4→L+1 (97)
27	434.5	0.0167	H-6→LUMO (57), H-6→L+2 (29)
28	426.4	0.4091	H-6→LUMO (11), H-6→L+2 (18), H-6→L+3 (19), H-4→L+5 (10)
29	421.9	0.4676	H-6→L+3 (16), H-5→LUMO (18), H-5→L+2 (23)
30	419.6	0.1776	H-6→L+3 (24), H-6→L+4 (12), H-5→L+2 (20)
31	415.2	0.4267	H-6→LUMO (21), H-6→L+2 (27), H-6→L+3 (15)
32	414.5	0.3164	H-6→L+4 (61)
33	412.4	0.0247	H-5→L+2 (22), H-5→L+3 (72)
34	408.1	0.1204	H-6→L+2 (10), HOMO→L+6 (16)
35	407.1	0.052	H-6→L+5 (72)
36	405.8	0.0347	H-5→L+4 (75)
37	404.3	0.0971	H-5→L+4 (12), H-2→L+6 (10), HOMO→L+6 (25)
38	402.8	0.2523	H-5→L+5 (53)
39	400.2	0.2474	H-5→L+5 (22), H-1→L+6 (39)
40	399.1	0.3904	H-5→L+5 (14), H-1→L+6 (12)
41	397.5	0.0841	H-6→L+1 (90)
42	390.4	0.0249	H-1→L+6 (28), HOMO→L+6 (12)
43	382.7	0.2344	H-8→LUMO (48), H-7→LUMO (10)

Table S1. Computed positions, major contributions and oscillator strength (f) of the first 100 electronic transitions of (H = HOMO, L = LUMO).

44	378.1	0.135	H-8→LUMO (18), H-7→LUMO (38)
45	373.1	0.24	H-4→L+6 (21), H-3→L+6 (32)
46	371.9	0.2227	H-4→L+6 (22), H-3→L+6 (47)
47	367.2	0.2054	H-7→L+1 (23), H-4→L+6 (26), HOMO→L+7 (16)
48	366.3	0.0034	H-10→LUMO (11), H-10→L+2 (31), H-10→L+3 (13), H-9→L+2 (13)
49	364.1	1.0378	$H-6 \rightarrow L+6$ (14), $H-4 \rightarrow L+3$ (11), $H-3 \rightarrow L+2$ (14)
50	363.2	0.0799	$H-11 \rightarrow L+2$ (26), $H-11 \rightarrow L+3$ (30), $H-11 \rightarrow L+5$ (14)
51	361.4	0.0006	H-6→L+6 (10), H-2→L+6 (56), HOMO→L+6 (22)
52	360.7	0.0578	$H-10 \rightarrow L+3$ (16), $H-10 \rightarrow L+4$ (19), $H-10 \rightarrow L+5$ (13)
53	360.2	0.2798	H-7→L+1 (10), H-4→L+6 (14)
54	359.8	0.0256	$H-11 \rightarrow L+2$ (15), $H-11 \rightarrow L+3$ (12), $H-11 \rightarrow L+4$ (30), $H-11 \rightarrow L+5$ (19)
55	358.0	0.0774	H-13→LUMO (24), H-12→LUMO (15), H-7→L+1 (12), HOMO→L+7 (14)
56	357.1	0.4059	H-6→L+6 (50), H-2→L+6 (10)
57	356.6	0.0075	H-8→L+1 (67)
58	351.4	0.0055	H-2 \rightarrow L+8 (12), HOMO \rightarrow L+7 (15), HOMO \rightarrow L+8 (42)
59	348.2	0.0019	H-16→LUMO (11), H-15→LUMO (76)
60	347.1	0.0042	H-14→LUMO (11), H-14→L+2 (16), H-9→L+2 (13)
61	346.2	0.0119	H-19→LUMO (17), H-1→L+8 (15)
62	345.5	0.021	H-1 \rightarrow L+7 (11), H-1 \rightarrow L+8 (41)
63	344.8	0.0056	H-19→LUMO (49)
64	343.8	0.2201	H-13→L+1 (21), H-12→L+1 (13)
65	342.0	0.2086	H-13→L+1 (13), HOMO→L+7 (13)
66	341.8	0.0192	H-12→L+2 (15)
67	340.2	0.0203	H-16→LUMO (12), H-13→LUMO (10), H-12→LUMO (14)
68	338.5	0.0111	H-7→L+2 (14), H-2→L+7 (17)
69	338.3	0.0108	H-15→L+1 (14), H-2→L+7 (10)
70	338.0	0.0037	H-20→LUMO (31), H-15→L+1 (31)
71	337.6	0.0001	H-11→LUMO (70)
72	336.9	0.0118	H-20→LUMO (58), H-15→L+1 (23)
73	335.7	0.0004	H-9→LUMO (19), H-7→L+2 (18), H-2→L+7 (12)
74	334.7	0.0061	H-14→LUMO (20), H-7→L+3 (10), H-1→L+7 (23)
75	334.5	0.0008	H-1→L+7 (42), H-1→L+8 (10)
76	334.1	0.0027	H-10→LUMO (53), H-9→LUMO (11)
77	333.4	0.003	H-7→L+2 (13)
78	332.7	0.0299	H-12→L+3 (21)
79	331.8	0.0036	H-19→L+1 (29), H-16→LUMO (19)
80	331.7	0.0156	H-19→L+1 (30), H-7→L+2 (10)
81	331.4	0.0061	H-19→L+1 (11), H-7→L+3 (11)
82	330.9	0.0077	H-7→L+2 (10), H-7→L+3 (19)
83	330.2	0.0109	H-17→LUMO (26), H-17→L+2 (13)
84	329.4	0.0194	H-3→L+7 (24), H-3→L+8 (57)
85	329.2	0.0093	H-14→L+2 (12), H-7→L+4 (13)
86	328.6	0.0024	H-10→L+3 (25), H-10→L+4 (16)
87	328.2	0.0409	H-14→L+2 (12)
88	327.1	0.0279	H-14→L+2 (12)
89	327.1	0.0001	H-7→L+4 (10), H-7→L+5 (19)
90	326.6	0.005	H-10→L+4 (12), H-10→L+5 (17), H-9→L+5 (11)

01	226.5	0.0075	
91	326.5	0.0065	$H-20 \rightarrow L+1 (34), H-10 \rightarrow L+5 (13)$
92	326.3	0.012	H-20→L+1 (19), H-11→L+4 (13), H-11→L+5 (11), H-4→L+8 (24)
93	326.3	0.0078	H-11→L+3 (13), H-11→L+4 (20), H-11→L+5 (19), H-4→L+8 (18)
94	326.1	0.0051	H-20→L+1 (20), H-18→LUMO (20), H-4→L+8 (10)
95	325.2	0.0018	H-14→L+3 (11), H-7→L+4 (30)
96	324.9	0.0001	H-11→LUMO (16), H-11→L+2 (31), H-11→L+3 (12), H-11→L+5 (19)
97	324.4	0.0002	H-17→LUMO (20), H-9→L+4 (10)
98	323.8	0.0044	H-14→L+2 (14)
99	323.3	0.0046	H-7→L+5 (28)
100	322.8	0.0056	HOMO→L+9 (54)

Figure S21. Bar graph reporting the calculated oscillator strength and calculated position of the 100^{st} electronic transitions calculated by TDDFT for **1** (bar graph; f = computed oscillator strength). The black line is generated by assigning an arbitrary thickness of 1000 cm^{-1} to each bar.

Figure S22. Geometry optimization of **2** (DFT; B3LYP). Top: side view; bottom: top view. The interplanar dihedral angles and center-to-center distances are placed in the text.

Figure S23. Representation of the frontier MOs of 2. Energy in eV.

No.	Wavelength (nm)	Osc. Strength	Major Contribs (%)
1	579.3	0.0489	H-5→LUMO (17), H-5→L+1 (15), H-1→LUMO (22), H-1→L+1 (24)
2	552.3	0.0729	HOMO→L+2 (49)
3	548.2	0.0061	H-3 \rightarrow L+2 (15), H-2 \rightarrow L+2 (13), HOMO \rightarrow L+3 (40)
4	542.8	0.0143	H-2 \rightarrow L+2 (23), H-2 \rightarrow L+3 (16), HOMO \rightarrow L+4 (12)
5	541.9	0.0627	H-5 \rightarrow LUMO (14), H-5 \rightarrow L+1 (15), H-1 \rightarrow LUMO (20), H-1 \rightarrow L+1 (18)
6	540.0	0.0018	H-2 \rightarrow L+4 (10), H-1 \rightarrow L+4 (10), HOMO \rightarrow L+4 (25)
7	535.2	0.0003	H-2 \rightarrow L+2 (26), H-2 \rightarrow L+3 (24), HOMO \rightarrow L+3 (16)
8	529.0	0.0036	H-2→L+4 (33)
9	527.7	0.0053	HOMO \rightarrow L+4 (13), HOMO \rightarrow L+5 (48)
10	520.7	0.0073	H-2→L+4 (12), H-2→L+5 (52)
11	496.1	0.0227	H-1 \rightarrow LUMO (17), HOMO \rightarrow LUMO (71)
12	493.8	0.0057	H-4→L+2 (31), H-4→L+3 (10), H-3→L+2 (30)
13	489.6	0.0057	H-4→L+3 (24), H-4→L+4 (20), H-3→L+3 (29), H-3→L+4 (12)
14	489.5	0.0001	H-1→L+1 (18), HOMO→L+1 (77)
15	485.1	0.0007	H-4→L+2 (10), H-4→L+3 (14), H-4→L+4 (25), H-3→L+5 (37)
16	484.4	0.0021	H-2→LUMO (80)
17	483.9	0.0094	H-4→L+5 (40), H-3→L+4 (33)
18	478.9	0	H-2→L+1 (91)
19	475.3	0.0346	H-1→L+2 (69), HOMO→L+2 (16)
20	468.2	0.0026	H-1→L+3 (73), HOMO→L+3 (16)
21	463.5	0.0011	H-1→L+4 (74), HOMO→L+4 (16)
22	457.4	0.0019	H-3→LUMO (92)
23	456.7	0.0041	H-1→L+5 (74), HOMO→L+5 (17)
24	452.1	0	H-3→L+1 (100)
25	447.8	0.0012	H-4→LUMO (94)
26	442.8	0	H-4→L+1 (100)
27	429.6	0.2234	H-6→L+2 (46), H-4→L+5 (17)
28	424.8	0.0139	H-5→L+2 (89)
29	423.3	0.0322	H-6→L+2 (15), H-6→L+3 (59)
30	419.5	0.2703	H-6→L+2 (10), H-6→L+4 (48)
31	419.1	0.0051	H-5→L+3 (95)
32	415.4	0.0009	H-5→L+4 (99)
33	413.6	0.6694	H-6→L+2 (14), H-6→L+3 (10), H-6→L+4 (38)
34	409.9	0.0013	H-5→L+5 (99)
35	408.5	0.093	H-6→L+5 (53)
36	404.8	0.002	H-6→L+3 (11), H-6→L+5 (36), HOMO→L+6 (10), HOMO→L+7 (14)
37	403.5	1.2397	H-7→LUMO (11), H-5→L+1 (24)
38	398.5	0.0605	H-2→L+6 (24), H-2→L+7 (36)
39	393.3	0.3366	HOMO→L+7 (19)
40	392.9	0.5621	H-5→LUMO (28), H-1→L+1 (12), HOMO→L+6 (14)
41	391.0	0.0247	H-7→LUMO (42), H-6→LUMO (18), HOMO→L+6 (20), HOMO→L+7 (11)
42	389.1	0.0156	$H-6\rightarrow LUMO (69)$
43	386.9	0.0311	H-/ \rightarrow LUMO (12), H-6 \rightarrow L+1 (11), H-1 \rightarrow L+6 (24), H-1 \rightarrow L+7 (10), HOMO \rightarrow L+6 (10)

Table S2. Computed positions, major contributions and oscillator strength (f) of the first 100 electronic transitions of **2** (H = HOMO, L = LUMO).

44	386.2	0.0223	H-6→L+1 (81)
45	382.9	0.0111	H-7→L+1 (60)
46	379.8	0.2936	H-7→L+2 (60)
47	376.0	0.0084	H-8→LUMO (40), H-8→L+1 (41)
48	375.7	0.0245	H-2→L+6 (52), H-2→L+7 (28)
49	373.8	0.0576	H-3→L+6 (32), H-3→L+7 (43)
50	372.4	0.3131	H-7→LUMO (11), H-7→L+1 (13), H-5→L+1 (17), H-1→L+6 (11)
51	371.7	0.1846	H-7→L+2 (11), H-7→L+3 (40), H-7→L+4 (15)
52	369.5	0.1751	H-4→L+6 (25), H-4→L+7 (38)
53	366.4	0.4117	H-7→L+3 (21), H-3→L+6 (11), H-3→L+7 (14)
54	365.0	0.0119	H-11→L+2 (13), H-7→L+3 (12), H-7→L+4 (42)
55	364.9	0.0171	H-12→L+2 (11), H-11→L+2 (27), H-7→L+4 (17)
56	363.1	0.0424	H-12→L+3 (34), H-12→L+4 (12), H-11→L+3 (13)
57	361.3	0.0956	H-7→L+4 (11), H-7→L+5 (42), H-3→L+6 (13)
58	360.6	0.001	H-11→L+3 (19), H-11→L+4 (14), H-11→L+5 (17)
59	360.5	0.2547	H-7→L+5 (15), H-6→L+6 (13), H-6→L+7 (23), H-3→L+6 (13)
60	359.7	0.0043	H-12→L+2 (12), H-12→L+4 (20), H-12→L+5 (22)
61	358.7	0.5649	H-7→L+5 (16), H-4→L+7 (10)
62	358.2	0.0244	H-1→L+6 (23), H-1→L+7 (51)
63	356.4	0.0191	H-8→LUMO (42), H-8→L+1 (43)
64	356.3	0.4325	H-6→L+7 (11), H-3→L+6 (11), H-3→L+7 (17)
65	353.2	0.0832	H-9→L+1 (21), H-5→L+6 (39), H-5→L+7 (17)
66	353.1	0.3595	H-4→L+6 (41), H-4→L+7 (25)
67	351.1	0.1817	H-9→LUMO (71), H-9→L+1 (12)
68	347.8	0.1811	HOMO→L+8 (57)
69	347.6	0.3755	H-9→L+1 (38), H-5→L+6 (17), HOMO→L+8 (13)
70	344.6	0.0108	H-2→L+8 (60)
71	344.3	0.0293	H-16→L+2 (26), H-2→L+8 (18)
72	342.4	0.0255	H-16→L+3 (16), H-10→L+2 (25)
73	340.7	0.0203	H-10→L+2 (14), H-10→L+5 (10)
74	338.5	0.0107	H-17→L+4 (11), H-10→L+3 (24)
75	338.1	0.0093	H-15→LUMO (25), H-15→L+1 (11), H-14→LUMO (46)
76	336.0	0.0545	H-17→L+2 (13), H-13→L+2 (32), H-13→L+3 (11)
77	335.6	0.0432	H-15→LUMO (14), H-15→L+1 (67)
78	333.9	0.0393	H-18→L+1 (24), H-14→L+1 (56)
79	333.1	0.0443	H-13→L+3 (38), H-11→L+3 (10)
80	332.5	0.0165	H-15→LUMO (48), H-14→LUMO (30)
81	332.4	0.0076	H-19→L+3 (12), H-13→L+4 (41)
82	331.1	0.0001	H-12→L+2 (35), H-11→L+2 (16)
83	330.9	0.0023	H-16→L+2 (27), H-10→L+4 (22)
84	330.7	0.0131	H-18→LUMO (70)
85	330.0	0.0239	H-16→L+3 (15), H-3→L+8 (44)
86	329.5	0.0064	H-11→L+3 (24), H-11→L+4 (19), H-10→L+3 (10)
87	329.1	0.0815	H-19→L+2 (12), H-3→L+8 (33)
88	329.0	0.0004	H-5→L+6 (31), H-5→L+7 (69)
89	328.4	0.0311	H-20→L+1 (13), H-18→L+1 (48), H-14→L+1 (15)
90	328.2	0.056	H-17→L+3 (10), H-16→L+3 (12), H-13→L+5 (13)

91	327.7	0.0105	H-17→L+2 (11), H-10→L+4 (10), H-10→L+5 (17)
92	327.2	0.0002	H-12→L+5 (40), H-11→L+4 (20)
93	327.0	0.0101	H-13→L+5 (16), H-12→L+4 (24), H-11→L+5 (33)
94	326.6	0.0003	H-17→L+2 (19)
95	326.2	0.008	H-22→LUMO (29), H-20→LUMO (41)
96	325.6	0.0687	H-20→L+1 (66), H-18→LUMO (10)
97	324.9	0.0007	H-4→L+8 (93)
98	324.1	0.0026	H-17→L+2 (16), H-17→L+3 (14), H-16→L+2 (10), H-16→L+3 (12)
99	323.8	0.0072	H-22→LUMO (16), H-22→L+1 (54), H-1→L+9 (14)
100	322.8	0.0018	H-17→L+4 (10), HOMO→L+10 (44)

Figure S24. Bar graph reporting the calculated oscillator strength and calculated position of the 100^{st} electronic transitions calculated by TDDFT for **2** (bar graph; f = computed oscillator strength). The black line is generated by assigning an arbitrary thickness of 1000 cm^{-1} to each bar.

Figure S25. Time evolution of **1** of the fs-TAS in 2MeTHF at 298 K (λ_{exc} = 425 nm; 40 pJ/pulse; IRF = 138 fs). The time-deconvoluted spectra (440-600 nm) are in the text.

Figure S26. Time evolution of $\Delta T/T$ for **1** in 2MeTHF at 298 K ($\lambda_{exc} = 425$ nm; 40 pJ/pulse; IRF = 138 fs) for various monitored wavelengths.

Figure S27. Time evolution of the fs-TAS **2** in 2MeTHF at 298 K (λ_{exc} = 425 nm; 40 pJ/pulse; IRF = 160 fs). The time-deconvoluted spectra (440-600 nm) are in the text.

Figure S28. Time evolution of $\Delta T/T$ for **2** in 2MeTHF at 298 K ($\lambda_{exc} = 425$ nm; 40 pJ/pulse; IRF = 160 fs) for various monitored wavelengths.

Figure S29. Time evolution of the fluorescence spectra of **1** in 2MeTHF at 298 K (Streak camera, $\lambda_{exc} = 425$ nm; 500 pJ/pulse; IRF = 10 ps). The time-deconvoluted spectra are in the text.

Figure S30. Time evolution of the fluorescence intensity of 1 in 2MeTHF at 298 K monitored at various wavelengths ($\lambda_{exc} = 425$ nm; 500 pJ/pulse; IRF = 10 ps).

Figure S31. Time evolution of the fluorescence spectra of **1** in 2MeTHF at 77 K (Streak camera; $\lambda_{exc} = 425$ nm; 500 pJ/pulse; IRF = 11 ps). The time-deconvoluted spectra are in the text.

Figure S32. Time-deconvoluted spectra of 1 in 2MeTHF at 77 K. Note that the 2.1 ns value cannot be inaccurate as it exceeds 1 ns, the limit of the Streak camera. Moreover, the shape of the fluorescence of the $[\mathbf{Zn}_2]$ chromophore could not be exact because of the weakness of this component. However, the time scale is.

Figure S33. Time evolution of the fluorescence intensity of **1** in 2MeTHF at 77 K monitored at various wavelengths ($\lambda_{exc} = 425$ nm; 500 pJ/pulse; IRF = 11 ps).

Figure S34. Time evolution of the fluorescence spectra of **2** in 2MeTHF at 298 K (Streak camera; $\lambda_{exc} = 425 \text{ nm}$; 500 pJ/pulse; IRF = 10 fs). The time-deconvoluted spectra are in the text.

Figure S35. Time evolution of the fluorescence intensity of **2** in 2MeTHF at 298 K monitored at various wavelengths ($\lambda_{exc} = 425$ nm; 500 pJ/pulse; IRF = 10 ps).

Figure S36. Time evolution of the fluorescence spectra of **2** in 2MeTHF at 77 K (Streak camera; $\lambda_{exc} = 425$ nm; 500 pJ/pulse; IRF = 10 fs). Note that the 5.5 ns value cannot be inaccurate as it exceeds 1 ns.

Figure S37. Time-deconvoluted spectra of **2** in 2 MeTHF at 77 K. Note that the 5.5 ns value cannot be inaccurate as it exceeds 1 ns.

Figure S38. Time evolution of the fluorescence spectra of **2** in 2MeTHF at 77 K monitored at various wavelengths ($\lambda_{exc} = 425$ nm; 500 pJ/pulse; IRF = 10 ps).

Figure 39. Sum of the absorption spectra of 5 + 8, and 5 + 9 (top), compared to those for 1 and 2.

Figure 40. Schematic representations of the four possible conformations of dyads 1 and 2. Blue = $[Zn_2]$, red = [Fb], black = PDB spacer. For dyad 2, the bridge C₆H₄-C=C-C₆H₄, is assumed to be planar ($\gamma = 0^\circ$) for sake of simplicity. Two pairs of conformers are mirror-image of each other.