Noble Gas Encapsulated B₄₀ Cage

Sudip Pan,^{1,*} Manas Ghara,² Susmita Kar,² Ximena Zarate,³ Gabriel Merino,^{4,*} and Pratim K.

Chattaraj.^{2,*}

¹Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering,

Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing

Tech University, Nanjing, China

²Department of Chemistry and Center for Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur-721302, India

³Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Santiago, Chile

⁴Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida. km 6 Antigua carretera a Progreso. Apdo. Postal 73, Cordemex, 97310, Mérida, Yuc.,

México

*Corresponding authors: sudip.pan@cinvestav.mx (SP); gmerino@cinvestav.mx (GM);

pkc@chem.iitkgp.ernet.in (PKC)

Supporting Information

Table S1. The rate constants (k, Sec⁻¹) for the dissociation process, Ng@B₄₀ \rightarrow Ng + B₄₀ and Ng₂@B₄₀ \rightarrow Ng + Ng@B₄₀ computed at the ω B97XD/def2-TZVP// ω B97XD/def2-SVP level.

	B7-hole	B ₆ -hole
System	K	k
He@B ₄₀	4.7x10 ⁻⁵⁰	3.9x10 ⁻⁵⁰
Ne@B ₄₀	1.5x10 ⁻⁸⁸	2.6x10 ⁻⁸⁹
$Ar@B_{40}$	3.8x10 ⁻¹³⁹	4.5x10 ⁻¹³⁸
Kr@B ₄₀	6.0x10 ⁻¹¹¹	5.1x10 ⁻¹⁴⁴
Xe@B ₄₀	5.2x10 ⁻¹⁰¹	1.9x10 ⁻¹³³
$Rn@B_{40}$	2.7x10 ⁻⁹⁰	7.6x10 ⁻¹¹⁹
$He_2@B_{40}$	4.0x10 ⁻³¹	
$Ne_2@B_{40}$	2.0x10 ⁻³⁷	
$Ar_2@B_{40}$	7.5×10^{0}	

Table S2. Ng-Ng interatomic distances in Å unit in free Ng_2 dimer.

System	$r(Ng-Ng)$ in $Ng_2@B_{40}$	r(Ng-Ng) in free Ng ₂	Δ (r(Ng-Ng))
He2@B40	1.672	3.174	1.502
Ne ₂ @B ₄₀	1.906	3.334	1.428
Ar ₂ @B ₄₀	2.232	4.092	1.860
Kr ₂ @B ₄₀	2.335	4.308	1.973

Table S3. Electron density descriptors (au) at the bond critical points (BCPs) between two Ng atoms in free Ng₂ dimer.

System	ВСР	$\rho(r_c)$	$\nabla^2 \rho(r_c)$	$H(r_c)$
He ₂	Не-Не	0.0005	0.0032	0.0002
Ne ₂	Ne-Ne	0.0011	0.0066	0.0004
Ar ₂	Ar-Ar	0.0015	0.0056	0.0004
Kr ₂	Kr-Kr	0.0018	0.0064	0.0005

Fig. S1 Activation free energy barrier, ΔG^{\ddagger} , for release of Ng along B₆ hole for Ng@B₄₀. ΔG^{\ddagger} is computed at the ω B97X-D/def2-TZVP// ω B97X-D/def2-SVP level with thermal correction taken from the latter level.

Fig. S2 The molecular graphs of Ng@B40 and Ng2@B40 systems showing BCPs.

Fig. S3 The difference density plots of the major contributing NOCV orbitals of Ng₂@B₄₀ systems. The associated ΔE_{orb} values in kcal/mol are given within parentheses.