
High-Performance Thermoelectric Materials Based on the Ternary TiO₂/CNT/PANI Composites

Fuat Erden, Hui Li, Xizu Wang, FuKe Wang, Chaobin He

Supporting Information

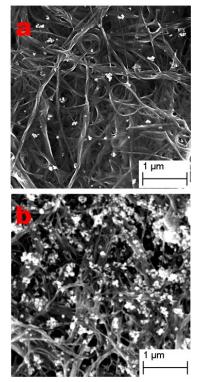
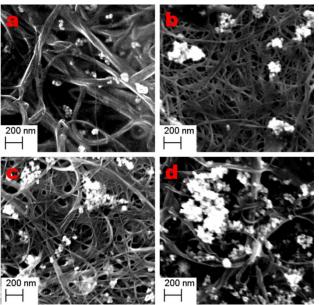



Figure S2. SEM micrographs of the 70%a-CNT-50%PANI composites with different TiO₂ content: 10% (a), and 70% (b) – illustrating the disruption of 3D conducting CNT network at high TiO₂ content composites.

Figure S3. SEM micrographs of the 50%a-CNT/50%PANI composites (a, and c) and 70%a-CNT/30%PANI composites (b, and d) with different TiO₂ content: 30% (a, and b), and 70% (c, and d) – illustrating the disruption of 3D conducting CNT network at high TiO₂ content composites.

	e.	mposites		
Materials	Conductivity (S/cm)	Thermopower (μV/K)	PF (µW/mK²)	Ref.
PANI/SWNT/Te	345	54	101	[1]
PPy/GP/PANI	500	29	42	[2]
rGO/CdS/PANI	2.9x10 ³	18	92	[3]
PEDOT/rGO/SWNT	208.4	20.9	9.1	[4]
rGO/PEDOT/Te	35	202	143	[5]
Te/Cu _{1.75} Te/PEDOT	1.73	220	84	[6]
PVAc/Graphene/TiO	26	-42	47	[7]
TiO ₂ /a-CNT/PANI	2183	22.9	114.5	This work

Table S1. Comparison of the room temperature TE properties of the organic based ternary
composites

References

- 1. Wang, L., et al., Engineering carrier scattering at the interfaces in polyaniline based nanocomposites for high thermoelectric performances. Mater. Chem. Front., 2017. **1**(4): p. 741-748.
- 2. Wang, Y., et al., *Polypyrrole/Graphene/Polyaniline Ternary Nanocomposite with High Thermoelectric Power Factor.* ACS Appl Mater Interfaces, 2017. **9**(23): p. 20124-20131.
- 3. More, P.V., et al., *Band engineered p-type RGO–CdS–PANI ternary nanocomposites for thermoelectric applications.* Sustainable Energy Fuels, 2017. **1**(8): p. 1766-1773.
- 4. Li, X., et al., *Poly(3,4-ethylenedioxythiophene)/graphene/carbon nanotube ternary composites with improved thermoelectric performance.* Organic Electronics, 2016. **38**: p. 200-204.
- 5. Choi, J., et al., *High-Performance Thermoelectric Paper Based on Double Carrier-Filtering Processes at Nanowire Heterojunctions.* Advanced Energy Materials, 2016. **6**(9).

- 6. Zaia, E.W., et al., *Carrier Scattering at Alloy Nanointerfaces Enhances Power Factor in PEDOT:PSS Hybrid Thermoelectrics.* Nano Lett, 2016. **16**(5): p. 3352-9.
- 7. Dey, A., et al., *Polymer based graphene/titanium dioxide nanocomposite (GTNC): an emerging and efficient thermoelectric material.* Dalton Transactions, 2015. **44**(44): p. 19248-19255.