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I. METHODS

A. All-atom MD simulations

Our system consists of a single-layer graphene membrane with a pore in the center and

in 1 Mol/L KCl solution, as shown in Figure 1 of the main text. We build the system using

VMD 1.9.1 [1] and perform all-atom molecular dynamics simulations using NAMD2 [2] with

periodic boundary condition in all directions. The force field parameters are rigid TIP3P [3]

for water and CHARMM27 [4] for the other atoms. We fix the outer edge of the graphene

membrane but the bulk of the membrane has no confinement other than the C-C bonds of

graphene. The simulations have an integration time step of 2 fs and Langevin damping of

0.2 ps for only carbon and water (via its oxygen atoms). Non-bonded interactions (van der

Waals and electrostatics) have a cutoff of 1.2 nm. However, full electrostatic calculations

occur every 4 time steps using the Particle Mesh Ewald (PME) method. We first minimize

the energy of the system for 4000 steps (8 ps) and then heat it to 295 K in another 8 ps.

A 1 ns NPT (constant number of particles, pressure and temperature) equilibration using

the Nose-Hoover Langevin piston method [5] – to raise the pressure to 101 325 Pa (i.e., 1

atm) – followed by 3 ns of NVT (constant number of particles, volume and temperature)

equilibration generates the initial atomic configuration. An electric field perpendicular to

the plane of the membrane (1 V potential difference) drives the ionic current through the

pore.

B. Pore radius

We consider three pore sizes with effective radius a = 0.49 nm, a = 1.18 nm, and a = 1.81

nm, as shown in Figure S-1. Geometrically, the radius of the pore can be defined as the

average distance between the center of the pore and the pore atoms at the edge minus the

van der Waals radius of carbon (0.17 nm), i.e., the average distance between the center

of pore and edge of the carbon atoms. However, the radius of the accessible area for the

transport of ions is about 0.2 nm smaller than rp, as shown in Figure S-2. The exclusion

near the pore edge is due to van der Waals (vdW) repulsion (i.e., the finite ion size since we

already account for carbon’s vdW radius) and dehydration. Thus, we define the effective
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FIG. S-1. A 6 nm × 6 nm section of the graphene sheet showing the pores with effective radii (a)

a = 0.49 nm, (b) a = 1.18 nm, and (c) a = 1.81 nm. We construct the pores by removing all carbon

atoms within 0.8 nm, 1.5 nm, and 2.2 nm, respectively, of the pore center and also removing any

dangling bonds. The geometric definition of the pore radius, rp, is the average distance between

the center of the pore and the inner edge of the pore atoms (i.e., carbons with a size given by their

vdW radius). However, the effective pore radius, a, is about 0.2 nm smaller than rp due to the

finite size (hydration and vdW radii) of the ions. The schematic view here is in agreement with the

statistical view of ion crossings, see Figure S-2, with the exception of some minor contextual issues

arising from the pore atomic structure (e.g., the ion crossings have a clear hexagonal symmetry).

radius, a of the pore as

πa2J̄ =

∫ rp

0

J(ρ)2πρdρ, (1)

where J(ρ) is the current density at radial coordinate ρ (assuming cylindrical symmetry,

which is reasonable for graphene pores but not perfect – relaxing this would require much

longer simulations to acquire sufficient statistics on the angular dependence of ion crossings)

and J̄ is the average current density in the region of the pore where J(ρ) is flat. This

calculation is essentially weighing the area contributions by the Boltzmann factors at that

location, except we use the out-of-equilibrium probability distribution of ion crossing events

instead of the Boltzmann factors from the free energy barriers. The quantity J̄ serves the

role of an “unattenuated” current density – i.e., the current density where there is no excess

free energy barrier. We note that fluctuations of the graphene membrane, specifically around

the pore edge, also affects the pore size and its effect is included in Eq. (1).
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FIG. S-2. Current density of K+ and Cl− crossing pores with radii (a) a = 0.49 nm, (b) a = 1.18

nm, and (c) a = 1.81 versus the cylindrical coordinate ρ =
√
x2 + y2. The top panels show

scatter plots of ion crossings in the xy-plane. The circles indicate rp – the geometric pore radius

– which is about 0.2 nm bigger than the radius of the accessible area, as seen by the gap in

the ion crossing events. The bottom panels show variation of current density J , normalized by

“unattenuated” current density J̄ , with radial coordinate ρ inside the pore. The black arrows show

the effective pore radius from this distribution of J . Error bars are ±1 standard error from six

parallel simulations.

C. Error analysis for convergence in time

We compute the error in the MD results using the block standard error (BSE) method

[6]. We divide a single MD run of duration T into number of contiguous blocks of equal

duration τ . The BSE is given by

BSE =
sτ
√
τ√
T
, (2)

where sτ =
√∑

i(〈Iτ 〉i−〈IT 〉)2
(Nb−1) is the standard deviation of the mean current 〈Iτ 〉, within each

of the Nb blocks. The error bars in the plots are ±1 BSE unless otherwise noted.
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FIG. S-3. Maxwell-Hall form of the access resistance fitted for L = 8.4 nm, L = 9.6 nm, and

L → ∞ (extrapolated resistance). Only when L → ∞ does the exact Maxwell-Hall form emerge

for the access resistance, i.e., a coefficient of 1 times γ/2a. The error bars are ±1 BSE.

II. FINITE-SIZE SCALING

As mentioned in the main text, if all the linear dimensions of the cell (experimental

or theoretical) are simultaneously taken to be large, the normal bulk component of the

resistance will vanish and the measured resistance is expected to take on the form

R∞ =
γ

2a
+
γhp
πa2

(3)

in the continuum limit and assuming a cylindrical pore of height hp. R∞ can be found by

using the finite-size scaling

R =γ

(
H

GL2
− f

GL

)
+R∞, (4)

where GL2 is the cross-sectional area of the cell, L is the cross-sectional length, G is a

geometric factor (G = π/4 for a cylindrical cell and G = 1 for a rectangular cell), and f is

the fitting parameter.

In Figure S-3, we fit a modified form of Eq. 3 for L = 8.4 nm, L = 9.6 nm, and L→∞,

RL =
bLγ

2a
+
hLγ

πa2
, (5)

where bL and hL are the fitting parameters. For L = 8.4 nm and L = 9.6 nm, the access

resistance is larger than the Maxwell-Hall form due to the unbalanced dimensions of the

cell and the cell’s relative size compared to the differing pore radii. Only when L → ∞ do

we get exactly the Maxwell-Hall value. Also, the fitted value of the membrane thickness is

≈ 1.2 nm. This is consistent with the separation of ion density peak on the two sides of the

graphene membrane (i.e., the charge dipole layer separation), as seen in Figure S-4.
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FIG. S-4. (a) K+ and Cl− ion densities, and (b) net charge density when a 1 V voltage is applied

across a graphene membrane with a radius a = 0.49 nm pore. The peak of K+ ion concentration

is closer to the graphene membrane than that of Cl− due to smaller ionic size of the former. The

z distance between the two peaks is about 1.5 nm. The error bars are ±1 standard error from six

parallel simulations.

III. ELECTRIC FIELDS AND CURRENT DENSITY

We calculate the electrostatic potential and the charge density using the VolMap plugin

of VMD. The current density is the average ion displacement between the snapshots (10 ps)

over the length of the simulation,

~J(~r) =

∑
i qi~vi(~r)

dV
, (6)

where the sum is over all the ions within the volume element dV (with dx = dy = dz = 0.1

nm) at position ~r.

Figure S-5 shows the flow pattern for three different cell cross sections with a pore radius

a = 1.18 nm. In each of them, the current density J quickly orients along z-axis. It is also

seen from Fig S-5 that J decreases with A = GL2, which can be understood by looking at

the average value of Jz according to our model,

〈Jz〉 =
V

RA
=

V

γ(H − fL) +R∞GL2
. (7)

IV. BULK RESISTIVITY

We calculate the bulk resistivity from our MD simulations using a cell without the

graphene membrane/pore. The standard value of the bulk resistivity is γ = 1/ne(µK+µCl) ≈
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FIG. S-5. The current density, J , showing the flow pattern for different cell cross sections from

MD simulations of a graphene nanopore with radius a = 1.18 nm. The flow quickly orients with

the z-axis away from the pore regardless of the cross-sectional area of the cell. Note that J is not

constant with L due to a changing balance of bulk and pore resistance.

67 MΩ·nm. The value from MD is γMD ≈ 70 MΩ·nm, as shown in Figure S-6. It is to be

noted that the actual value of resistivity of 1 M KCl at room temperature observed in ex-

periments is γexp ≈ 90 MΩ·nm. At the high concentration of KCl (such as 1 mol/L), the

conductance deviates from the linear expression, γ = 1/ne(µK + µCl). However, the MD

results give the conductance according to the linear expression.

In Figure S-7 we plot the potential drop along the z-direction when 1 V potential is applied

across the graphene membrane. At larger distances, ∆z, from the pore, the potential drop,

∆V , is proportional to the bulk resistivity γ, since

∆V = I∆R =
Iγ∆z

A
, (8)

where ∆R is the resistance of the region away from the pore.
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FIG. S-6. (a) Resistance versus simulation cell height and (b) resistance versus cross-sectional area

for a bulk solution of 1 mol/L KCl. The red line gives γMD as the best fit to R = γMDh/A, and

the blue line shows standard resistivity γ = 1/ne (µK + µCl) ≈ 67 MΩ·nm. The error bars are ±1

BSE.
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FIG. S-7. Potential V versus the z-distance averaged over a cylindrical region of radius ρ = 1 nm

for a = 0.49 nm (red line) and radius ρ = 2 nm for a = 1.18 nm (green line). The slope of potential

drop is constant and equal to bulk resistiviy beyond |z| & L/2 (with L = 9.6 for a = 1.18 nm and

L = 7.2 nm for a = 0.49 nm). But within |z| . L/2 the slope increases initially very slowly and

then very rapidly near the pore (z = 0). The error in the potential is comparable to the size of

data markers.
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