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Supplementary Information

.  Spontaneous Raman spectra of C,Cl,

For comparison we present also the spontaneous Raman spectra in order to find out what is the role of coherent
excitation of molecules. The spontaneous Raman scattering spectra were acquired applying NXR-FT Raman Module
Nicollette 6700 FT-IR spectrometer with a pump wavelength of 1um. The spectra were recorded in backward scattering
geometry with a resolution of 1em™, for two configurations of polarizers, parallel (H) and perpendicular (V). There are five

Raman active vibrational modes, i.e. three of them of A, symmetry; v;=1571 em?, vz=447cm’1 and v3=237cm’1’ and two of

9,15,16

them , v,=347 em® of By, and vs=512 em® of B,z symmetry . Two last modes are not visible in the isotropic

configuration:

4
liso = IHH —§|Hv (1)

Besides that in the isotropic part of the spectrum | the influence of rotational dynamics of molecules is excluded. On

IsO
the other side the anisotropic Raman line profiles 1., =1, are dependent on molecular anisotropy. In Fig.S1 we present
the Raman spectrum of intramolecular vibrations in the frequency range 150 — 600 cm™. We are not interested in higher
frequency vibrations since they are not observed in our time resolved experiments. It can be seen that the isotropic signal,
obtained according to Eq.1, contains only three peaks assigned to modes of A, symmetry; around 447 em®, around 237
em™and a small peak at 464 em™. The first two correspond to fundamental vibrations of a C,Cl, molecule, i.e. v, is as the
symmetric C-Cl stretching vibration in the plane of molecule (v—CCL)u, and v; is the symmetric CCl, deformation (S—CCIZ)H.
The small third peak has been identified as the overtone (2\/3,)10’11 and does not occur in the anisotropic spectrum. In
contrast to the v; fundamental, the v, one has a very weak anisotropic contribution, which is apparent in the 1, signal in

| |
Fig.51. The depolarization ratios 57 = Ii =0.08 and py37 = Iﬂ =0.66 obtained from the spectra in Fig.51 are in good
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agreement with the results of other authors®*,
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Fig.S1. Raman spectrum of C,Cl, for two polarization configurations: the top spectrum (HH) was obtained for parallel polarizations of the
scattered and incident light waves; the middle spectrum (HV) was obtained for perpendicular polarizations of the scattered and incident
light waves; the bottom spectrum was obtained by subtraction of the middle spectrum from the top one according to Eq.1.

N . . . | |
The depolarization ratios of two depolarized lines p37 = Iﬂ =0.77 and pgp = Ii =0.73, are also close to the results
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B1L18 The isotropic part, shown in Fig.S2, exhibits evident splitting of the bands due to natural abundance

of other authors™



2

of chlorine isotopes. It can be seen even in a very weak 237cm™ peak, shown in Fig.S3. The frequency spacing between
succeeding peaks results from mass differences of B and ¥l isotopes. According to the
formula® Aw, = a)l(mym ~Ms, )/8m35CI itis estimated to be 3cm™ for 447 cm™ band and 1.64 cm™ for 237 cm™ band.

Thus, the isotope fine structure of the Raman band is the most apparent for the v, symmetrical stretching vibration. We
have performed the curve-fit analysis of the 447cm™ band, as shown in the bottom plot of Fig.52. The contributions of
particular isotopologues have been fitted by Gaussian-Lorentzian curves. It means that in the stochastic response the
frequency modulations due to the distribution of the surrounding molecules is significant26’33. The obtained amplitudes and
life times of succeeding vibrations, calculated from the line peak widths, are shown in Table 1 of the main text.
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Fig.5S2. Raman spectrum of the v, fundamental obtained as the Fig.S3. Raman spectrum of the v; fundamental obtained as
enlarged part of spectra in Fig.S1. In the bottom isotropic spectrum the enlarged part of spectra in Fig.1l. In the bottom
the black line is the experimental curve and the red line is the fit spectrum the grey line shows the real magnitude of the
curve. The fine continuous lines show contributions of particular peak.

isotopologues. In the middle spectrum the grey line shows the real
magnitude of the peak.

Il. The theoretical model of the medium:

Each C,Cl, molecule is represented by a linear oscillator with two C atoms in the middle and Cl (35CI or 37CI) atoms on
both sides. Since we do not see C-C stretching vibration in our time resolved measurements, for simplicity we assume that

C-C bond is rigid:
k1 kl
(1, 00000 O—000(cr)

We consider only longitudinal vibrations in line of the interatomic bonds. Thus, the intramolecular harmonic Hamiltonian

12 2 . .
has the form H, = > Zlkl(xc - xc,ﬂ) , where Xc and Xel, denote the small displacements of the appropriate atoms from
n=:
the equilibrium positions and k; is the intramolecular force constant. Thus we consider three types of virtual molecules,
35CI-C-C-35CI, 37CI-C-C-37CI, 3cl-c-c-¥cl. If we denote Mgy, Mc as the masses of the chlorine and carbon atoms,

respectively, M; =mg)+2mc +Mcy, as the mass of the i-th molecule, and 11 +
1 1

Hi Mg, Mcy,

as the inverse reduced mass

of chlorine atoms in a given i-th molecule, then the general expressions for the normal square frequencies a)f and the

) . L ) . Mgy, —Mc .
appropriate coordinates (; in a single molecule, found with accuracy to the linear terms —2 L, are the following:

Mcy,



. . . . 2 k]_ mc
for symmetric stretching vibration, @ :2_,Ui , and i = (Xel, _XCIZi)+7i(XC|1i +Xc,,—2Xc,) (2)
. o 2_k K _ 2% ) Mc _
for asymmetric stretching vibration, o) = > + ,and Oy = (Xl +Xc1, —2Xc,) (Xel, —Xc1,) (3)
1 ﬂl mc 1 1 1 pl 1 1

where we have introduced i = 1

Pi Mey, Mgy,

, Which equals zero for symmetric molecules *¢cl-c-c-*cland ¥cl-c-c-¥cl

. . 35 37 . Mgy, =My . .
since Mgy, =Mey, . For asymmetric molecule ™CI-C-C-"’Cl the ratio —2 1 ~0.06 . The symmetric stretching
Mcy

1
vibration of such oscillators is Raman active and can correspond to both \/2:447cm'1 and \/3:237cm'1 fundamentals in

C,Cly molecule for the appropriate kj values, which are assumed in our model as ky =k, = Mas (27zcv2)2 or

Ky = ki3 =Mas, (27zcv3)2 . The asymmetric vibration in a linear symmetric molecule is Raman inactive.

We assume the medium as a set of dimers composed of two molecules parallel to each other:

fv

Fig.54

where the interaction between the closest chlorine and carbon atoms belonging to different moleculesi,j, is considered.
We have denoted the axes (x, y) of the momentary frame of reference connected with a dimer. In our simplified model we
consider rigid-linear molecules, which means that we do not take into account intramolecular vibrations perpendicular to
the molecular line. Then the intramolecular displacements of atoms along the molecular axes become directed along y axis

2
¥i =[0,y;] and intramolecular Hamiltonian has the form Hj, :% zkl(YCi — Yeini )2 , where i=1,2 numbers molecules and
i,n=1

n=1,2 numbers Cl atoms in a molecule. The interaction Hamiltonian between atoms belonging to different molecules,
i # J, results from expansion of pair Lennard-Jones potential in power series with respect to small atomic displacements. In
our dimer we have T (Cly;,Clyj) =1(Cl;, Cl) + Arj = [R + AXj, Ay;; ], and similarly for 1(Cly;,Cly;) and 1(C;,C;) . The

equilibrium vector between atoms belonging to different i and j molecules has only x component,
L (Cl;,Cl;) =15(C;,C;) =[R,0] . In order to get the influence of transversal interactions on intramolecular vibrations, in

the interaction Hamiltonian we have taken into account higher order anharmonic mixed terms:

1 2 2 2 2)
Hi=5 2 (kz(xusj —Xcigi )" +Ka(Xeg —Xcg )™ + (ka2 /R)(Xerg —Xeig )(Yerg — Yeig )™ + (ks /R)(Xegj —Xegi MYeg — Veg;)
i~
s=i,2
where k, denotes the intermolecular CI-Cl force constant and k; denotes the intermolecular C-C force constant.

We will denote the I-th dimer as d,, the left molecule with j=1 and the right molecule with j=2.

Il.1. Equations of motions for small atomic displacements from the equilibrium positions in the I-th dimer are the following:

- for intramolecular displacements ( in these equations both carbon atoms belonging to the same molecule have the same
displacements):



mey,, Yo, =ki(Ye, — Yoi,) +Ka(Xai,, —¥c1, )(¥ei, — Yo, )/ R

2meye, =ki(yer, + Yer,, —2¥c,)+ ks(Xc,, TXc,, —*c, —X%c,,)(¥Vc, —¥Yc,)/R

mey,, Yei,, =—k1(Yar,, — Ye,) +ka(Xcr,, —*a1, )Ver, — Yo, )/ R

mey, Yer,, =ki(Ye, = Yei,) — ko (1, —Xei, )V, — Yer, )/ R (4a)
2meye, =ki(Yeu, + Yer,, —2Yca) —Ka(Xe,, +Xc, —*c, —Xc,,) (Yc, — Ye,)/R

mey,, Yer,, =ki(Ye, = Yai,,) — ko (¥cr,, —Xc1,, )(Yal, — Yoi, )/ R

for displacements along x axis we remain only harmonic terms ( in these equations the carbon atoms belonging to the
same molecule may have different displacements):

Mci,, Xél:l11 =ka (X1, —Xc1,)
Mc X::u =ks(xg, —Xc,,)
MeXe,, = ks(Xc,, —Xc,,)

Mey,, Xer,, = k2 (Xcr,, = Xcl,,)

Mc,, XE:l12 =Ky (xc1,, —Xc1,,) (ab)
Mc X::u =-k3(xc,, = Xc,,)

Mc X::ZZ =—ks(Xc,, —Xc,,)

Met,, Xct,, =—K2(Xc1,, = Xcl,,)

where for clarity we have omitted the index | at each displacement.

For each I-th dimer we introduce new coordinates being the combinations of the displacements. We will number the
considered vibrations with index A=1,2,3,4,5,6,7,8,9,10,11,12. Four of them are the amplitudes of normal vibrations of
single molecules:

m m
Q =dy; =(Yei, —Yel,,) ﬂ“zc(yd11 +Yo,,—2¥e1); Qe =0 =(Yei, ~Ye,,) er—;:(YU12 +Ye1,,~2Yc,)

m m
Q2 =021 = (Y, +yCI21_2yC1)_EC(YCIM —Yei,);  Qa =02 =(Yci, +Ycl, —ZS/CZ)—p—z(Yu12 —Yal,,)

Then, there is the amplitude of the intermolecular interaction Qg , corresponding to the out of phase displacement of the

whole molecules along y axis:

Mgy,
Mc

2m
LYo, +—=(Ye, — Y, )~
Mci

Ill

Mc) Mgy

12 22

Ve, T Y, (5a)
11 Clll Clll

Qs =Yai, +

and the out of phase displacement of the whole molecules along x axis:

Cly,

Mcy m Mcy me
— 21 C _ _ _ 12 _ 22
Q6 =X, +——Xel, t = (Xc,, +Xc, —Xc,, —Xc,,) X o XCly (Sb)

CIll Ill Clll C 11

Along x axis we introduce normal variables for the whole dimer:

Q7 = (X(;|11 + XC11 - XC|21 - XC21 - XC|12 - XC12 + XC|22 + XC22 )/2\/5,
Q8 - (XCIM + XC11 - XC|21 - XCz1 + XCllz + XC12 - XClzz - Xczz)/z‘/z;

Qg = (Xei,, + X, +Xciy, +Xa, — (e, +Xc,, +Xe,, +Xc,))/ 242 ;

Quo = (X, +Xet,, =Xl = Xa1, = (Xey, + X1 = Xc), —Xc,, )22 _

’



Qup =(Xcl,, —Xc,, —Xcl,, T Xc,, T X, —Xc, —Xcl, + XCZZ)/Z\/E )

Q2= (XC|11 - XCu - XC|21 + XCn - XC|12 + Xclz + XClzz - Xsz)/Z\/E . (6)

The conditions of the center of mass frame of reference have the form:

Mc m Mc My
— 21 C 12 22
0=Xep, +———Xei, + = (Xe, +Xc, +Xey, TXey, ) T =5 Xan, X,

I11 Ill CI11 c'll

Mcl,
Mc

Cly,

2m, m, Mc
0=yg, +—= YCI21+ﬁ(YC1 +Y¥c,)+ Yo, +#yuzz ()

Ill 11 11 11

The model simplifies if we consider the rigid plane molecules. Then Qg = Qg =Qy; =Qy» =0, and there are possible only

the following combinations of displacements:
1) Xcl, = Xel, = Xc, = XC21 =X Xen, = Xal, =X, = XCZZ =X,
what corresponds to translational vibrations of the whole molecules. The out-of-phase vibration is defined by
= Mcy, (1 1
Qe = (X —Xp) = —| = =g
6 1~ X2 2 (M, M, 6
2) Xal, =—Xcl,,;  Xcl, =—Xcl,, and Xg, =—Xc,; X, =—Xc,, What corresponds to oscillations of molecules around

their centers of mass. It becomes obvious if we put Xg),, =01, X1, = h®, and Xc,| =190y, X, =1gO;, where
I =r(C,Cl)+ry and ry= % Iy (C,C) are the distances of chlorine and carbon atoms from the center of mass of a

molecule, respectively, and ®; denotes the angular displacement of molecular line from the dimer y axis. Then we have

and Q7 = (X1, +Xc, —Xc1, —%c,) /2= (g +10)(©1-©,)/ 2 - out of phase oscillations
Qg =(Xcy, +Xc, *+Xcl, T%c,) /2= (1o +139)(@1+©3)/2 - in phase oscillations.

Then from Egs.(6) we have:

Xl —Xcp. =20 Cly +Me " M, +Me +Qg - 20, Mei, —Mer, — Met,, ~Mely,
Clyy Cly 7 6 8
Ma M2 M M and

= Mcy, *Mc Mg, +Me | — _—[ Mg, —Mcy,  Mer, —Me,,
Xcl,, —Xcl, =—2Q7 + +Q6 —2Qg -
M M, M M,

’

-1 -1
where we have introduced the denotations: Q; = Q{l-ﬂ— "1_0} and Qg = Q8[1+ rl—OJ .
fo fo

The dynamics of the dimers, subjected to the interaction of the incident pump pulse, is described by the set of equations
of motion for these eight amplitudes with a damping term and the driving force f, = Pk(ll) (MFF (),
where Pk(ll) (1) denotes the first derivative of the medium polarizability with respect to the appropriate normal amplitude
Q; and F ()= ((g +2)/3)ES"™(t) . We have assumed the optical pump field to have a Gaussian envelope,

2
Eipump(t) = Eie_(tlzm) e'wt; At is the pulse width, o is the central frequency, and the pump optical field is linearly

polarized.



The equations of motion for all modes in a dimer, Q; =01, Qs =01, Q3 =012, Q4 =02, Qs, Qg, Q7, Qg, with accuracy

1 .
to — terms, are the following:
Pi

Q"=— QT (2Q7(Qz Qs -2(ye, —¥e,) +Qs(Q - Q)

_#(267((31 +Q3) +66(Q4 -Qx+2(yc, - ycl))‘* fy
L1

Q"Z:—[i+ ]QZ—FQ2+

5 (267 (Q-Q3)-Q6(Qs Q2 +2(yc, — Ve, )))
o Mc iy

Ky (= _ Ky =
* iy (2 (Qu Q2+ 203, =¥, )~ Q@+ Q) Qs ¥+ o

Q- —ﬁos Q¢ 522070z ~Qu -2, ~¥6,) +Qs(Qs ~Q)

2 (2Q7 (Q+Q3)+Q6(Qs —Q2 +2(yc, - Ve, ))+ f3

ol

_ _ Ke —
(2Q7(Q4 -Q2+2(yc, —¥c,)) —Qe(Q ‘”?3))‘%%()@2 —Ye, )+ 4

(2Q7(Q1 Q) - Q6(Qs - Q2 +2(¥c, - ¥c, )

2k; + 4k
Q"5 —2—(2Q7(Q1 Q3)+Q6(Q2 Q4))- ﬁQs(ch —YC1)—F5Q'5+f5

Ill 11

_ — _(mg.m, Mcp. M —(mg.m M. M _
Qg =—(2k, + 2k3)[i+ LJ Qs —20Q; Cly Clyy | Chp Clyp | 2Qq Cly "Clyy  Clyp "'Cly, || Qs+ s
My M, /My p2M, /My p2M,
Q= kz[iﬂ“iJ[ Mc+Mey,, N Mc +Mcy, ]+ ky 1 . 1 [mclmma11 N Mci,, Mci,, ]+ 2ksrig 9+
Mo i M M, Mc, M, My p2My Mclo (8)

1 1 \=
—ka [— - —]Qe -I7Q7+f;
PL P2

Mey. M Mep. M Me+m Me +m _
Q= _kz[i_i] [ Cly "Cly _ Clip " Clyp JQ QG —ky [__i]( crch,  TCTTCh, J Q, -IQg+ g
Mo M My poM; Mmoo My My

where (yc2 - ycl) is the combination of normal amplitudes:

Mgy 1 1
Yo, = Yo, =— 211 [Ml ]Qs o (mdll Mciy, )Q1 R e M, (mc:|11 +Mclyy )Q
(8a)
1 1
- M(mchz ~Meiy, )QS - M(mchz +Meipy )Q4

It can be seen that the equation of motion for Q; describes librations of molecules within the dimer with frequency
dependent on the intermolecular interaction coefficients k, and k3. In asymmetric dimers the frequency of in-phase
1
libration Qg is proportional to —5-0On the other hand, in symmetric dimers the equation for Qg describes free rotation of
Pi
both molecules. If the displacements of both molecules are equal it corresponds to free rotation of the dimer.

In the case of symmetric dimers composed of two identical molecules, 14 =, =1, M{=M,=M and p; = p, =p, the

sum and the difference of intramolecular normal amplitudes describe the in-phase and out-of-phase vibrations of both
molecules, respectively. If we put T} =I'3 and I, =T, , the appropriate equations have the form:

- for in-phase symmetric vibration 61 =(Q+0)/2=(Q+Qg)/2,



Q" =- :1 Q-N0Qy+f (9a)
U

- for out-of-phase symmetric vibration Q, = (G —Gy)/2=(Q, -Q3)/2,

k= = Ky fm = ==\ Ky e = ==\ &
Q2= —5L QT2 (P00 -QQ ) 52 (200 -0+ (9b)
- for out-of-phase asymmetric vibration Qg = (2, —022)/2=(Q, —Q,)/2

— (K K )e = Ky == ==\ K (== ==\ ks = .

Q3= —[iJréJQs -I,Q 3+ﬁ(ZQ7Q2 +Q6Q3)+ ZRi) <2Q7Q3 —QsQl)+%QG(YC2 -yc)+f3 (9c)

- for in-phase asymmetric vibration Qg = (Gpy +02)/2=(Q, +Q,)/2,

Q4= {kl+ liQA ~0,Q'+ 14 (9d)
Z/J Mc
- for intermolecular out-of-phase vibration
. k = = 2kg + 4k, = .
Q's=2 - 2 (2QQ +Q6Q3)_%Q6(YC2 —Yq)—rsQ s++fs (Se)
cl,, cly,

where M =2mc +mcy +Mcy,, 4, AM =Mcy, —Mc;, and 1, respectively, are specified for a given symmetric dimer.

fi=(fi+f3)/2 fo=(f—f3)/2 fg =(f, =412 fr= (f, +14)/2.The index | numbering the dimers has been

omitted.

=, 2(2k, + 2kq) = —,
Q 6:_MQG_F6Q 6+ o
M
Ko  2kshg |=
Q7= {4—2 + ﬂ}@ -I7Q%7+1; (9f)
M Mcly
Q"g=-TgQ's+fg

It can be seen in Egs.(9) that the in-phase vibrations in symmetric dimers are unaffected by intermolecular interactions. The
equation for Qg describes free rotation of both molecules.

IIl. 2. Polarizability

In order to find the first order derivatives of the medium polarizability with respect to vibrational amplitudes, Pk(ll) W,

we have calculated the polarizabilities of all dimers, applying the Silberstein model®:

6
Ps= Zarseff (), (10)
n=1

2
. a . T
where with accuracy to the terms of order of —5 we have taken the effective polarizabilities in the form;
rnn'

n Iy Mnn' n" e Tnin

arseﬁ M =a()s,+Y a(SI’I') [3 I’r,nn'zrk,nn' 5y J{gks iy 06(3”") [3 rs,n'n"zl'k,n‘n" S J‘| (10a)

with  f ny = o (N,N) + Al o, and () denotes the polarizability of the n-th atom. The summation is performed over the
nearest neighbors. We have applied the values of undisturbed polarizabilities, «. =0.88 -1072*cm® for carbon atom and
ag =1.91-10"%*cm® for chlorine atom, from reference [28], assuming that Olgs oy = sz s and the equilibrium distances

between carbon and chlorine atoms, 1y =1y(C,Cl) =1.7-108cm and two carbon atoms, 1y =1,(C,C) -1.3-108cm , are

the same as in C,Cl, molecule taken from refs.[10, 11].



1
1.2.1 For isotropic dimer polarizability, Py, = §(PXX +Pyy +Py,), the dependence on atomic displacements appears

2
. a ) N . . - . .
only in terms of order of - - The first order derivatives of isotropic polarizability do not vanish only for in-phase
rnn'

symmetric stretching vibrations, Q, =0, and Q3 =@y, (in asymmetric dimers) or Q; (in symmetric dimers), and for

intermolecular translational mode Qg . The fit of the TT signal in Fig.1. was obtained applying formula:

PY - PO ® (Q+Qy)+PY (6)Qs (11)

where

2, 2 2 2, 2

p® ) = p® (3= _12| acaci +acac  acac _acad +acag

iso (1) =P 3) = 2 3 +— 3
r ry 1 R

° (11a)

1 12 (20 +ad acad +ala
|£o)(6)* ( C|Iq3 €, % CIr3 C m]
0

where r, denotes the length of the C-Cl bond and R is the distance between the molecular centers of mass in Fig.54. In the

Sl units the formulas should be multiplied by the factor 47zg, . Eq.(11) shows why the isotropic response obtained in time

220
)

resolved TT spectroscopy, Risg oc3— v (P,g,) , where N/V is the number density of dimers, includes only two symmetric

polarized vibrations. Since the sums of amplitudes (Q; +Q3) in asymmetric dimers exhibit the small dependence on k;,
proportional to 1/r, (Eq.(8)), and in symmetric dimers there is no dependence at all, Eq.(9), the TT signal is almost not

influenced by intermolecular vibrations. For atomic polarizabilities ¢ =0.88-107*cm® and o =1.91-10%*cm?, the
inter-atomic distances 1y =1y(C,Cl) =1.7-10%cm, oy =1(C,C) =1.3-10%cm and
i (Cli,Clj)=1(C;,Cj)=R= 4-108cm, the calculated values of the isotropic dimer polarizability derivatives are the

following: P,_g)) @ =-2.2-10"%cm?, P,g)) (6)=0.1-10""8cm?. It can be seen that the contribution of intramolecular

stretching vibrations is dominating in the isotropic response of C,Cl, liquid.

11.2.2. The anisotropic part of the dimer polarizability exhibits the dependence on atomic displacements already in terms

of order of aT (see Eqg.(10a):

n'

2 2

() ) 33X —r 3xy 0

a(h)a(n

Paniso = Z 3xy 3y2 -r2 o0
San T >(nn) 0 0 _r2

, Wwhere x, y are the components of vector r(n,n') and
r=r(n,n’)=-/x2+y?

The first order derivatives of anisotropic polarizability of a dimer for particular modes have the form:

010
o 2a(CI)a(C) B (2a2(C|)+a2(C))(mC|M M)
Paiso) =———— 2 0|+ e 100
o 00 1 1 000 .
010
2 2
p®d (2):(—4mca (C|)+(mC|11+mC|21)a (C)) 1 0
aniso M1R4
000

(12b)



1 2 2 010
2a°(Cl)+a“(C) me. —m,
Pérll)iso(s)zw 0 -2 0 —( ©n ( )}4 Cli, C'zz) 1.0 0
I’o 0 0 1 MzR 00 0 (12c)
0 0
p®) (4mc a®(Cl) - (mgy,, + mc|22)a2(C))
aniso(4): M R4 1 0
2 000
(12d)
0
Pd (5 —_mCI11(2“2(C')+0’2(C)) N P
anlso()— 2
R M, M,
(12e)
sace©)|’ t 0 (et r202) 2 O 0
P&fﬁ)iso(G):—a( ‘)10(( ) 10 0|+ a( )-;0!() 0 10
) 000 R 001 . PO (M=0 20
da(Chal©)  22%Q) |7 -
a o a~(C
Pa(%)iso(s):[ 4 + r4 Jl 00
0 0 Jo o0
(12g)

For symmetric dimers the following derivatives have simpler forms:

1 0 2 2 010
—. 2a(Cha(C — 2a°(Cl)+a“(C)mg), —mgy,)
Pé%)iso(Ql):%o -2.0 Pa(%)iso(Qz):( MR4)( Lk’ 0 0 B
b0 0 0 0] PB@)=0
010 , , o 10
= _lamea®(Cl) ~(mgy, +mgy,)a’(C) 2mgy 2%(Cl) +a*(C)
Pé%%so(Q3)=( VR X 00  PYL@Q)=- X o ) 0 0
000

8
i 1
P'j aniso (dlm er) = Elpij(a?niso (l)QA

In the dimer model presented here the libration Qy is Raman inactive, Péﬁ)iso(@) =0, which is not in agreement with

experimental results. In the next section we show the low frequency libration contribution in OKE spectrum. In order to
correct our model, just with respect to this vibration we would have to add the third molecule parallel to both previous
ones. In such a configuration two side molecules librate in-phase and the middle one out-of-phase. The contribution from

this vibration equals Pa(ﬁ)iso(Qg) .

The anisotropic response obtained in OKE spectroscopy is proportional to products <P|(|1) (A) PJ(}) (/1)> , where |, J denote the
axes of the laboratory frame of reference and the averaging is performed over all possible directions of dimer axes.
Assuming that the light wave propagates along Z axis and the electric field of the pump pulse is polarized along X axis, we

look for the differences <P>%g (ﬂy)P)%Z (/1)> —<PY(\1() (i)P)((l)Z (/1)> .

Let us consider the simplest configuration, in which the dimer axes (x,y) are rotated around Z axis with respect to the

A
y y W

laboratory frame of reference (X,Y) :



10

Then the dimer polarizability derivative for each mode, in laboratory frame of reference, has the form:

P cos’ @+ PP sin®@-Psin20 (P - PW)sin 200/2+ P cos20 0
PO =| (PR -PW)sin20/2+PY cos20 PP sin?@+P) cos? @+ PP sin20 0 (13)
0 0 pY

If we take into account that molecules rotate simultaneously with vibrations, then the rotation angle is time dependent,
®(t), and the nuclear part of the OKE response takes the form:

N .
Anxx —Anyy o - S{(RE) (2) By (4)) 005 20(t) 2R (2)sin 20(1)}Q (€) (14)
2
Substituting solutions Q, (t) of Egs. (8) or Egs.(9) into Eq.(14) we get the final form of the OKE signal:

Anyy —Anyy oc %%{(P&) (2) - PSP (4))? < cos 20(t) cos® ©(0) > +2(P§) (1)) < sin 2(t)sin 20(0) >}F, (1) (15)

t
where F;(t)= jGi(t—t')|EX|2(t')dt' and G, (t—t') is the Green’s function for the appropriate Eq.(7) for Q, (t) . The

t

e

T
rotational correlation functions were shown™ to decay in time as ™ Formula (15) was used to fit OKE signal in Fig.3.

In symmetric dimers the calculated contributions of particular modes in Eq. (15) are the following:

for the in-phase symmetric stretching vibration : (PX(%) - P)%) k(jl) :1.2~10_160m2; the out-of phase symmetric vibration is
Raman active only for asymmetric molecules mg)q # Mgy5 : PX()}) (Q,) =0.00007-10 "¢ cm?;
for the out-of-phase asymmetric vibration: P>8) Q) = 0.005-106¢m?;

the in-phase asymmetric vibration is Raman inactive: Pij(l) (Q4)=0;

for the translational nonlinear vibration: PX(;) Q) = 0.023:107%¢m?;

for translational vibration: Px(y (Qs)=0.9 -10%¢m? and (Px(i) - Py%) k(js) =0.06-10"%cm?;

and for rotational vibration: PX()}) Q) =1.35.10%cm? .
In asymmetric dimers the calculated contributions of particular modes in Eq. (15) are the following:

for @ mode: (B ~ PP k1) =1.2-10®em? and P (1) =0.00007-10 8 cm?
for Q3 mode: (Px(xl) -P§) )(1) =1.2:10"%cm?and P (1) =-0.00007-10 % cm?;

for Q,and Q4 modes: P{Y(2) =-P{) (4) =0.005-10¢cm?.

It can be seen that, in our model, the main contribution to the OKE spectrum comes from the in-phase symmetric stretching
vibrations v, and v, in the range 200—600cm’1, and from rotational and translational vibrations in the low frequency part of
the spectrum, v<100cm ™. Full OKE spectrum is shown in Fig.S7 below.

11l. Polarizability tensors for real C,Cl, molecule

In order to differentiate the contributions of both A, intramolecular modes, v2=447cm'1 and v3=237 cm'l, in both isotropic
and anisotropic responses, we have to calculate first order derivatives of the molecular polarizability of the real C,Cl,
molecule. We assume that the molecule lies in (y,z) plane (see Fig.S5) , perpendicular to the dimer plane shown in Fig.54.
Black circles denote C atoms and white circles denote Cl atoms. For simplicity we assume that the angle between CCl bonds
and y axis equals 60°.
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Fig.S5
Polarizability tensor of C,Cl, molecule, calculated on the basis of Eq.(10) and Eq.(10a) , has the form:

9.33

Prol = 11.46 -102*cm?, which gives the average value Tmol = (i +aryy + 1):22)/3:12.8-10724 cm?.
17.64

The derivatives for particular modes are calculated as™® Pr(sl) )= LNZPr(Sl)k (n)ey (A/n), where e (4/n) denotes the k-
k,n

th component of the displacement vector of n-th atom in a mode A and p& (n) is the first order polarizability derivative

rs,k
over the k-th component of the n-th atom displacement.
1 0 1 0 1 0 1 0
For447cm™mode: (v, /1)= S e(vy/2)= Sl Lf e(v,/3) = Sl L) e(vy/4) = 511
s 5 i fa
0 0 0 0
for 237 cm-1 mode: (v, /1) =% -3 ;8(vy 12) =% -3 ;e(v2/3)=% 3 8(vy 14) =% 3
-1 1 -1 1
The calculated matrices of polarizability derivatives are the following:
-2.0785 0
PO(v,) = -0.096 10%cm? and  PO(;)=| 2076 1078 ¢m?
-3.177 —2.814

1
The calculated first order derivatives of the isotropic polarizability, Pg, = E(PXX +Pyy +Py,) are the following:

PY(v,)=178-10"cm? and PP (15)=0.25.10"®cm? , which justifies small contribution of the 247cm™ mode in the

isotropic Raman and TT spectra.

Anisotropic contributions, visible in OKE response, are the following:

(PY - P k) = -1.98-10 6 cm? (P® - PP vg) = 207610 cmn?
PR ~PR vy =11.10 ™ em’ (P - PD kv3) = 28141020 cm?

(PZ(Zl) -p{ )(v?_) =-3.081-107%6cm? (PZ(Zl) -pP{Y )(vs) =-4.89.107%¢m?

and

OKE response is proportional to Rokg = %{(P&) - P)%))2 + (PX(%) - PZ(Zl))2 + (PZ(Zl) - P)gl,))z} . Thus,

Roke (v2) ~1.94-10%cm* and Roke (v3) = 4.82-107%2cm*, which means higher contribution of v; mode.
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IV. Optical Kerr Effect time signal and the FFT of time signal
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Fig.56. OKE time resolved signal for C,Cl, liquid and time derivative of OKE signal
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Fig.S7. FFT of the time signal obtained in the Optical Kerr Effect spectroscopy in the frequency range 0-600cm™, for two temperatures.

In Fig. S7 we can see the low frequency feature of the spectrum, which reflects the contribution of librational and

translational intermolecular vibrations. At low temperature the isotope splitting of the symmetric v, vibrational band
becomes apparent for two consistent reasons: the vibrational life time gets longer with lowering temperaturei‘g'40 and free
rotation of molecules is restricted due to stronger intermolecular interactions. The latter reason means that the rotational

life time tends to infinity.

39. W. Gadomski and B. Ratajska-Gadomska, Phys. Rev. A, 1986, 34, 1277;
40. V. M. Kenkre, A. Tokmakoff, and M. D. Fayer, J. Chem. Phys., 1994, 101 (12), 10618
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Fig.S8. The dependence of the FFT of the time domain OKE signal on intermolecular interactions, force constant k,.
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This picture supports our explanation of windowed FFT spectra in Fig.8 (in the main manuscript) and in the section
below. Diminishing of intermolecular interactions shows the same tendency as succeeding spectra in Fig.8. It means that
fine structure of v, band appears when the local structure of molecules and their mutual interactions diminish.

V. Windowed Fourier Transform Spectra in Log scale

2

FFT amplitude (a.u.)
FFT log scale (a.u.)
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Fig.S9. The v, band. Time series of the FFTs, in the log scale, of the time domain signals in Fig.4 (in the main manuscript), TT signal, (left
plot) and in Fig.6 (in the main manuscript), OKE signal, (right plot).
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Fig.510. The v; band. Time series of the FFTs, in the log scale, of the time domain signals in Fig.4(in the main manuscript), TT signal, (upper
plot) and in Fig.6(in the main manuscript), OKE signal, (bottom plot).



