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I. Spontaneous Raman spectra of C2Cl4 

     For comparison we present also the spontaneous Raman spectra in order to find out what is the role of coherent 

excitation of molecules. The spontaneous Raman scattering spectra were acquired applying NXR-FT Raman Module 

Nicollette 6700 FT-IR spectrometer with a pump wavelength of 1m. The spectra were recorded in backward scattering 

geometry with a resolution of 1cm
-1

, for two configurations of polarizers, parallel (H) and perpendicular (V). There are five 

Raman active vibrational modes, i.e. three of them of Ag symmetry; 1=1571 cm
-1

, 2=447cm
-1

 and 3=237cm
-1 , 

and
  
two of 

them , 4=347 cm
-1

 of B1g  and 5=512 cm
-1

 of B2g symmetry
9,15,16

. Two last modes are not visible in the isotropic 

configuration: 

                                                                                             HVHHiso III
3

4
                                                                                         (1)                                                                                                 

Besides that in the isotropic part of the spectrum isoI  the influence of rotational dynamics of molecules is excluded. On 

the other side the anisotropic Raman line profiles HVaniso II   are dependent on molecular anisotropy. In Fig.S1 we present 

the Raman spectrum of intramolecular vibrations in the frequency range 150 – 600 cm
-1

. We are not interested in higher 
frequency vibrations since they are not observed in our time resolved experiments. It can be seen that the isotropic signal, 
obtained according to Eq.1, contains only three peaks assigned to modes of Ag symmetry; around 447 cm

-1
 , around  237 

cm
-1 

and a small peak at 464 cm
-1

. The first two correspond to fundamental vibrations of a C2Cl4 molecule, i.e. 2 is as the 

symmetric C-Cl stretching vibration in the plane of molecule (-CCL)
11

, and 3 is the symmetric CCl2 deformation (-CCl2)
11

. 

The small third peak has been identified as the overtone (23)
10,11 

and does not occur in the anisotropic spectrum. In 

contrast to the 3 fundamental, the v2 one has a very weak anisotropic contribution, which is apparent in the HVI  signal in 

Fig.S1. The depolarization ratios 08.0457 
HH

HV

I

I
  and 66.0237 

HH

HV

I

I
  obtained from the spectra in Fig.S1 are in good 

agreement with the results of other authors
8,11,14

.  

 

Fig.S1. Raman spectrum of C2Cl4 for two polarization configurations: the top spectrum (HH) was obtained for parallel polarizations of the 
scattered and incident light waves; the middle spectrum (HV) was obtained for perpendicular polarizations of the scattered and incident 
light waves; the bottom spectrum was obtained by subtraction of the middle spectrum from the top one according to Eq.1. 

The depolarization ratios of two depolarized lines 77.0347 
HH

HV

I

I
  and 73.0512 

HH

HV

I

I
 , are also close to the results 

of other authors
8,11,14

.   The isotropic part, shown in Fig.S2, exhibits evident splitting of the bands due to natural abundance 

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2018



 2 

of chlorine isotopes. It can be seen even in a very weak 237cm
-1

 peak, shown in Fig.S3.  The frequency spacing between 
succeeding peaks results from mass differences of 

35
Cl and 

37
Cl isotopes. According to the 

formula
25  

ClClCl
mmm 353537 8/    it is  estimated  to be 3cm

-1
 for 447 cm

-1
 band and 1.64 cm

-1
 for 237 cm

-1
 band. 

Thus, the isotope fine structure of the Raman band is the most apparent for the 2 symmetrical stretching vibration.  We 
have performed the curve-fit analysis of the 447cm

-1
 band, as shown in the bottom plot of Fig.S2.  The contributions of 

particular isotopologues have been fitted by Gaussian-Lorentzian curves. It means that in the stochastic response the 
frequency modulations due to the distribution of the surrounding molecules is significant

26,33
. The obtained amplitudes and 

life times of succeeding vibrations, calculated from the line peak widths, are shown in Table 1 of the main text.   

                          

Fig.S2. Raman spectrum of the 2 fundamental obtained as the      
enlarged part of spectra in Fig.S1. In the bottom isotropic spectrum 
the black line is the experimental curve and the red line is the fit 
curve. The fine continuous lines show contributions of particular 
isotopologues.  In the middle spectrum the grey line shows the real 
magnitude of the peak. 

Fig.S3. Raman spectrum of the 3 fundamental obtained as 
the enlarged part of spectra in Fig.1. In the bottom 
spectrum the grey line shows the real magnitude of the 
peak. 

 

                                                                                                                                                                                                                                                                                                                                                                                                
II.   The theoretical model of the medium: 
            Each C2Cl4 molecule is represented by a linear oscillator with two C atoms in the middle and Cl (

35
Cl or 

37
Cl) atoms on 

both sides. Since we do not see C-C stretching vibration in our time resolved measurements, for simplicity we assume that 

C-C bond is rigid:                                                                   

                                                                                                                                                             

We consider only longitudinal vibrations in line of the interatomic bonds. Thus, the intramolecular harmonic Hamiltonian 

has the form 



2

1

2
10 )(

2

1

n
nClC xxkH , where Cx and  

nClx denote the small displacements of the appropriate atoms from 

the equilibrium positions and k1 is the intramolecular force constant. Thus we consider three types of virtual molecules, 
35

Cl-C-C-
35

Cl, 
37

Cl-C-C-
37

Cl, 
35

Cl-C-C-
37

Cl.   If we denote CCl mm
i
,  as the masses of the chlorine and carbon atoms, 

respectively, 
ii

ClCCli mmmM
21

2   as the mass of the i-th molecule, and 
ii ClCli mm

21

111



 as the inverse reduced mass 

of chlorine atoms in a given i-th molecule, then the general expressions for the normal square frequencies 2


 and the 

appropriate coordinates q in a single molecule, found with accuracy to the linear terms
1

12

Cl

ClCl

m

mm 
, are the following: 

Cl2i C Cl1i C 

k1 k1 
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for symmetric stretching vibration, 
i

k
i 


2

12

1
  ,   and            )2()(

21211 iiiii CClCl
i

C
ClCli xxx

m
xxq 


                         (2)                                   

for asymmetric stretching vibration, 
Ci m

kk
i

112

22



 , and  )()2(

21212 iiiii ClCl
i

C
CClCli xx

m
xxxq 


,                        (3)                     

where we have introduced 
ii ClCli mm

21

111



, which equals zero for symmetric molecules 

35
Cl-C-C-

35
Cl and 

37
Cl-C-C-

37
Cl  

since  
21 ClCl mm  .  For   asymmetric molecule    

35
Cl-C-C-

37
Cl   the ratio 06.0

1

12 


Cl

ClCl

m

mm
. The symmetric stretching 

vibration of such oscillators is Raman active and can correspond to both 2=447cm
-1

   and 3=237cm
-1

   fundamentals in 

C2Cl4 molecule for the appropriate 1k values, which are assumed in our model as 2
2121 )2(35 cmkk

Cl
 or 

2
3131 )2(35 cmkk

Cl
 . The asymmetric vibration in a linear symmetric molecule is Raman inactive. 

 

       We assume the medium as a set of dimers composed of two molecules parallel to each other: 

              Y 

 

                                X 

 

 

Fig.S4 

where the interaction between the closest chlorine  and carbon atoms belonging to different molecules i,j, is considered. 

We have denoted the axes (x, y) of the momentary frame of reference connected with a dimer.  In our simplified model we 

consider rigid-linear molecules,  which means that we do not take into account intramolecular vibrations perpendicular to 

the molecular line.  Then the intramolecular displacements of atoms along the molecular axes become directed along y axis 

],0[ ii yy 


 and intramolecular Hamiltonian has the form 



2

1,

2
10 )(

2

1

ni
niCliC yykH , where i=1,2 numbers molecules and 

n=1,2 numbers Cl atoms in a molecule.  The interaction Hamiltonian between atoms belonging to different molecules, 

ji  , results from expansion of pair Lennard-Jones potential in power series with respect to small atomic displacements. In 

our dimer we have ],[),(),( 011 ijijijjiji yxRrClClrClClr 


, and similarly for  ),( 22 ji ClClr


and ),( ji CCr


. The 

equilibrium vector between atoms belonging to different i and j molecules has only x component, 

]0,[),(),( 0 RCCrClClr jijio 


. In order to get the influence of transversal interactions on intramolecular vibrations,  in  

the interaction Hamiltonian we have taken into account higher order anharmonic mixed terms:  

 






2,1

2
3

2
2

2
3

2
2 ))()(/())()(/()()(

2

1

s
ji

siCsjCsiCsjCsiClsjClsiClsjClsiCsjCsiClsjClI yyxxRkyyxxRkxxkxxkH

where  k2 denotes the intermolecular Cl-Cl force constant and k3 denotes the intermolecular C-C force constant.                               

We will denote the l-th dimer as dl, the left molecule with j=1 and the right molecule with   j=2.  

II.1. Equations of motions  for small atomic displacements from the equilibrium positions in the l-th dimer are the following:  

- for intramolecular displacements ( in these equations both carbon atoms belonging to the same molecule have the same 

displacements):                                                                                                                                                                                                                     

Cl1i 

Cl2i 

C 

k1 

k1 

C 

Cl1j 

Cl2j 

C 

k1 

k1 

C 

k2 

k2 

k3 

k3 
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Ryyxxkyykym

Ryyxxxxkyyykym

Ryyxxkyykym

Ryyxxkyykym

Ryyxxxxkyyykym

Ryyxxkyykym

ClClClClClCClCl

CCCCCCCClClCC

ClClClClClCClCl

ClClClClCClClCl

CCCCCCCClClCC

ClClClClClCClCl

/))(()(

/)()()2(2

/))(()(

/))(()(

/))(()2(2

/))(()(

212221222222222

122111122222122

111211121221212

212221221212121

1221111222121111

111211121111111

21
''

321
''

21
''

21
''

31
''

21
''













                                          (4a)                       

for displacements  along x axis we remain only harmonic terms ( in these equations the carbon atoms belonging to the 

same molecule may have different displacements):                                                                                                                                                                                                                    

)(

)(

)(

)(

)(

)(

)(

)(

21222222

212222

111212

11121212

21222121

212221

111211

11121111

2
''

3
''

3
''

2
''

2
''

3
''

3
''

2
''

ClClClCl

CCCC

CCCC

ClClClCl

ClClClCl

CCCC

CCCC

ClClClCl

xxkxm

xxkxm

xxkxm

xxkxm

xxkxm

xxkxm

xxkxm

xxkxm

















                                                                                                                      (4b)                                                                          

where for clarity we have omitted the index l at each displacement. 

For each l-th dimer we introduce new coordinates being the combinations of the displacements.  We will number the 

considered vibrations with index .  Four of them are the amplitudes of normal vibrations of 

single molecules: 

)2()( 1
1

111 21112111 CClCl
C

ClCl yyy
m

yyqQ 


;        )2()(
222122212

2
123 CClCl

C
ClCl yyy

m
yyqQ 


; 

)()2(
211112111

1
212 ClCl

C
CClCl yy

m
yyyqQ 


;      )()2(

221222212
2

224 ClCl
C

CClCl yy
m

yyyqQ 


 

Then, there is the amplitude of the intermolecular interaction 5Q , corresponding to the out of phase displacement of the 

whole molecules along y axis:  

 
22

11

22

12

11

12

21

11

21

11

21

11
)(

2
5 Cl

Cl

Cl
Cl

Cl

Cl
CC

Cl

C
Cl

Cl

Cl
Cl y

m

m
y

m

m
yy

m

m
y

m

m
yQ                                                                                  (5a) 

and the out of phase displacement of the whole molecules along x axis:                                  

22

11

22

12

11

12

22122111

11

21

11

21

11
)(6 Cl

Cl

Cl
Cl

Cl

Cl
CCCC

Cl

C
Cl

Cl

Cl
Cl x

m

m
x

m

m
xxxx

m

m
x

m

m
xQ                                                            (5b)                                                      

Along x axis we introduce normal variables for the whole dimer: 

;22/)(
22221212212111117 CClCClCClCCl xxxxxxxxQ 

;22/)(
22221212212111118 CClCClCClCCl xxxxxxxxQ 

22/))((
22122111221221119 CCCCClClClCl xxxxxxxxQ 

;                  

22/))((
22121122122111 2110 CCCClClClCl xxxxxxxxQ 

;                                      
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22/)(
222212122121111111 CClCClCClCCl xxxxxxxxQ 

; 

22/)(
222212122121111112 CClCClCClCCl xxxxxxxxQ 

;                                                                                                   (6)                                                                                                                   

 The conditions of the center of mass  frame of reference have the form:               

                             
22

11

22

12

11

12

22122111

11

21

11

21

11
)(0 Cl

Cl

Cl
Cl

Cl

Cl
CCCC

Cl

C
Cl

Cl

Cl
Cl x

m

m
x

m

m
xxxx

m

m
x

m

m
x   

                
22

11

22

12

11

12

21

11

21

11

21

11
)(

2
0 Cl

Cl

Cl
Cl

Cl

Cl
CC

Cl

C
Cl

Cl

Cl
Cl y

m

m
y

m

m
yy

m

m
y

m

m
y                                                            (7) 

The model simplifies if we consider the rigid plane molecules. Then 01211109  QQQQ , and there are possible only 

the following combinations of displacements:    

1) 21
2212221221112111

; xxxxxxxxxx
CCClClCCClCl  ,                                                                                                      

what corresponds to translational vibrations of the whole  molecules. The out-of-phase vibration is defined by            

6
21

216
11

2
)( 11 Q

MM

m
xxQ

Cl














 .                                                                                                                                                                 

2) 
22122111

; ClClClCl xxxx   and 
22122111

; CCCC xxxx  what corresponds to oscillations of molecules around 

their centers of mass. It becomes obvious if we put 2010 1211
,  rxrx ClCl  and 210110 1211

,  rxrx CC , where 

1000 ),( rClCrr    and ),(
2

1
010 CCrr  are the distances of chlorine and carbon atoms from the center of mass of a 

molecule, respectively, and i denotes the angular displacement of molecular line from the dimer y axis.  Then we  have  

and           2/))((2/)( 211007 12121111
 rrxxxxQ CClCCl  - out of phase oscillations 

2/))((2/)( 211008 12121111
 rrxxxxQ CClCCl   - in phase oscillations.     

Then from Eqs.(6) we have:  

  












 

















 





21
86

21
7

122211212221

1211
22

M

mm

M

mm
QQ

M

mm

M

mm
Qxx

ClClClClCClCCl
ClCl

         and   













 

















 





21
86

21
7

122211211211

2221
22

M

mm

M

mm
QQ

M

mm

M

mm
Qxx

ClClClClCClCCl
ClCl

,   

where we have introduced the denotations: 

1

0

10
77 1


















r

r
QQ   and  

1

0

10
88 1


















r

r
QQ . 

   The dynamics of the dimers, subjected to the interaction of the incident pump pulse, is described by the set of equations 

of motion for these eight amplitudes  with a damping term and the driving force )()(
)1(

tFFPf lkkl   , 

where )(
)1( klP denotes the first derivative of the medium polarizability with respect to the appropriate normal amplitude 

Q  and  (t)E+ε=(t)F pump
kk 2)/3)(( 0 .  We have assumed the optical pump field to have a Gaussian envelope, 

titt
i

pump
i eeEtE 2)2/()(  ; t  is the pulse width,   is the central frequency, and the pump optical field is linearly 

polarized. 
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     The equations of motion for all modes  in a dimer, 87,65224123212111 ,,,,,, QQQQqQqQqQqQ  , with accuracy 

to 
i

1
 terms, are the following: 

 

 
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 
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   
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       (8)        

where  )(
12 CC yy   is the combination of normal amplitudes: 
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                                 (8a) 

                                                                                                                                                                                               

It can be seen that the equation of motion for 7Q describes librations of molecules within the dimer with frequency 

dependent on the intermolecular interaction coefficients k2 and k3. In asymmetric dimers the frequency of in-phase 

libration 8Q is proportional to 
2

1

i
. On the other hand, in symmetric dimers the equation for 8Q  describes free rotation of 

both molecules. If the displacements of both molecules are equal it corresponds to free rotation of the dimer. 

    In the case of symmetric dimers composed of two identical molecules,   21 , MMM  21 and   21 , the 

sum and the difference of intramolecular normal amplitudes describe the in-phase and out-of-phase vibrations of both 

molecules, respectively. If we put 31   and 42   , the appropriate equations have the form: 

- for in-phase symmetric vibration 2/)(2/)( 3112111 QQqqQ  , 
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                                                                                                                                                                    (9a)        

- for out-of-phase symmetric vibration 2/)(2/)( 3112112 QQqqQ  , 
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-  for out-of-phase asymmetric vibration 2/)(2/)( 4222213 QQqqQ   
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                          (9c)                                                                                              

-  for in-phase asymmetric vibration 2/)(2/)( 4222214 QQqqQ  , 
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- for intermolecular out-of-phase vibration  
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                                                                                                 (9e) 

where  
21

2 ClClC mmmM  ,   , 
12 ClCl mmm   and r , respectively,  are specified for a given symmetric dimer. 

2/)(;2/)(;2/)(;2/)( 424423312311 ffffffffffff  . The index l numbering the dimers has been 

omitted.  
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                                                                                                                                                  (9f)                                                                           

It can be seen in Eqs.(9) that the in-phase vibrations in symmetric dimers are unaffected by intermolecular interactions. The 

equation for 8Q  describes free rotation of both molecules. 

 

 

 

II. 2. Polarizability 

     In order to find the first order derivatives of the medium polarizability with respect to vibrational amplitudes, )(
)1( klP , 

we have calculated the polarizabilities of all dimers, applying the Silberstein model
28

: 





6

1

)(
n

eff
rsrs nP   ,                                                                                                 (10) 

where with accuracy to the terms  of order of 
6

'

2

nnr


 we have taken the effective polarizabilities in the form; 
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                                     (10a)                                                               

with   ',0', )',( nnkknnk rnnrr  , and )(n  denotes the polarizability of the n-th atom. The summation is performed over the 

nearest neighbors. We have applied the values of undisturbed polarizabilities, 3241088.0 cmC
 for carbon atom and 

3241091.1 cmCl
 for chlorine atom,

 
from reference [28], assuming that 

ClCl 3735   , and the equilibrium distances 

between carbon and chlorine atoms, cmClCrr 8
00 107.1),(   and two carbon atoms, cmCCrr 8

001 103.1),(  ,  are 

the same as in C2Cl4 molecule taken from refs.[10, 11].  
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II.2.1  For  isotropic dimer polarizability, )(
3

1
zzyyxxiso PPPP  ,  the dependence on atomic displacements appears 

only in terms of order of  
6

'

2

nnr


.  The first order derivatives of isotropic polarizability do not vanish only for in-phase 

symmetric stretching vibrations, 111 qQ   and 123 qQ   ( in asymmetric dimers) or 1Q ( in symmetric dimers), and for 

intermolecular translational mode  6Q . The fit of the TT signal in Fig.1. was obtained applying formula: 

6
)1(

31
)1()1(

)6()()1( QPQQPP isoisoiso                                                                          (11)              

 where 
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                                                                                   (11a)   

where r0 denotes the length of the C-Cl bond and R is the distance between the molecular centers of mass in Fig.S4.  In the 

SI units the formulas should be multiplied by the factor 04 . Eq.(11) shows why the isotropic response obtained in time 

resolved TT spectroscopy, 2)1(
)(3 isoiso P

V

N
R  20

, where N/V is the number density of dimers, includes only two symmetric 

polarized vibrations. Since  the sums of amplitudes  )( 31 QQ   in asymmetric dimers exhibit the small dependence on k2 , 

proportional to 1/r, (Eq.(8)),  and in symmetric dimers  there is no dependence at all, Eq.(9),  the TT signal  is almost not 

influenced by intermolecular vibrations.  For  atomic polarizabilities 3241088.0 cmC
  and 3241091.1 cmCl

 , the 

inter-atomic distances cmClCrr 8
00 107.1),(  ,  cmCCrr 8

001 103.1),(   and  

cmRCCrClClr jiji
8

00 104),(),(  ,  the calculated values of the isotropic dimer polarizability derivatives are the 

following:   216)1(
102.2)1( cmPiso

 , 216)1(
101.0)6( cmPiso

 . It can be seen that the contribution of intramolecular 

stretching vibrations is dominating in the isotropic response of C2Cl4 liquid.  

II.2.2.  The anisotropic part of the dimer polarizability exhibits  the dependence on atomic displacements already in terms 

of order of   
3

'nnr


(see Eq.(10a): 
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, where x, y are the components of vector )',( nnr


and 

22)',( yxnnrr 
. 

The first order derivatives of anisotropic polarizability of a dimer for particular modes have the form: 
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For symmetric dimers the following derivatives have simpler forms:        
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 In the dimer model presented here the libration 7Q  is Raman inactive, 0)( 7
)1(

QPaniso , which is not in agreement with 

experimental results. In the next section we show the low frequency libration contribution in OKE spectrum. In order to 

correct our model, just with respect to  this vibration we would have to add the third molecule parallel to both previous 

ones.  In such a configuration two side molecules librate in-phase and the middle one out-of-phase.  The contribution from 

this vibration equals )( 8
)1(

QPaniso .                                                                                                                                                                              

The anisotropic response obtained in OKE spectroscopy is proportional to products )()(
)1()1(  JJII PP , where JI , denote the 

axes of the laboratory frame of reference  and the averaging is performed over all possible  directions of dimer axes.  

Assuming that the light wave propagates along Z axis and the electric field of the pump pulse is polarized along X axis, we 

look for the differences )()()()(
)1()1()1()1(  XXYYXXXX PPPP  .  

Let us consider the simplest configuration, in which the dimer axes (x,y) are rotated around Z axis with respect to the 

laboratory frame of reference (X,Y) :      



y’ 
y 

x’ 

x 
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Then the dimer polarizability derivative for each mode, in laboratory frame of reference, has the form: 
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aniso

P

PPPPPP

PPPPPP

P                                              (13) 

If we take into account that molecules rotate simultaneously with vibrations, then the rotation angle is time dependent, 

)(t ,  and the  nuclear part of the OKE response takes the form:  

)()}(2sin)(2)(2cos))()({( )1()1()1( tQtPtPP
V

N
nn xyyyxxYYXX 



                                                        (14) 

Substituting solutions )(tQ  of Eqs. (8) or Eqs.(9)  into Eq.(14) we get the final form of the OKE signal: 

)(})0(2sin)(2sin))((2)0(cos)(2cos))()({( 2)1(22)1()1( tFtPtPP
V

N
nn xyyyxxYYXX 



             (15)                            

where  



t

X dttEttGtF ')'()'()(
2

  and )'( ttG   is the Green’s function for the appropriate Eq.(7) for )(tQ . The 

rotational correlation functions  were shown
19

 to decay in time as 
rot

t

e




. Formula (15) was used to fit OKE signal in Fig.3. 

In symmetric dimers the calculated contributions of particular modes in Eq. (15) are the following: 

for the in-phase symmetric stretching vibration :   216
1

)1()1( 102.1)( cmQPP yyxx
 ; the out-of phase symmetric vibration is 

Raman active only for asymmetric molecules 21 ClCl mm  : 216
2

)1( 1000007.0)( cmQPxy
 ;                                                                                                                                                                

for the out-of-phase asymmetric vibration:  216
3

)1( 10005.0)( cmQPxy
 ;                                                                                                               

the in-phase asymmetric vibration is Raman inactive: 0)( 4
)1(

QPij ;                                                                                                                          

for the translational nonlinear vibration: 216
5

)1( 10023.0)( cmQPxy
 ;                                                                                                                                           

for translational vibration: 216
6

)1( 109.0)( cmQPxy
 and     216

6
)1()1( 1006.0)( cmQPP yyxx

 ;                                                                                                

and for rotational vibration: 216
8

)1( 1035.1)( cmQPxy
 .                                                                                                                                       

In asymmetric dimers the calculated contributions of particular modes in Eq. (15) are the following: 

for 1Q mode:   216)1()1( 102.1)1( cmPP yyxx
 and 216)1( 1000007.0)1( cmPxy

 ;                                                                                

for 3Q mode:   216)1()1( 102.1)1( cmPP yyxx
 and 216)1( 1000007.0)1( cmPxy

 ;                                                                             

for 2Q and 4Q modes: 216)1()1( 10005.0)4()2( cmPP xyxy
 . 

It can be seen that, in our model, the main contribution to the OKE spectrum comes from the in-phase symmetric stretching 

vibrations 2 and 3, in the range 200-600cm
-1

, and from rotational and translational vibrations in the low frequency part of 

the spectrum, <100cm
-1

. Full OKE spectrum is shown in Fig.S7 below.   

III. Polarizability tensors for real C2Cl4 molecule 

In order to differentiate the contributions of both A1g intramolecular modes,  2=447cm
-1

 and 3=237 cm
-1

, in both isotropic 

and anisotropic responses, we have to calculate first order derivatives of the molecular polarizability of the real C2Cl4 

molecule. We assume that the molecule lies in (y,z) plane (see Fig.S5) , perpendicular to the dimer plane shown in Fig.S4.  

Black circles denote C atoms and white circles denote Cl atoms. For simplicity we assume that the angle between CCl bonds 

and y axis equals 60
o
. 
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                                       Fig.S5 

Polarizability tensor of C2Cl4 molecule , calculated on the basis of Eq.(10) and Eq.(10a) , has the form: 

32410

64.17

46.11

33.9

cmPmol


















 , which gives the average value 324108.123/)( cmzzyyxxmol
  . 

The derivatives for particular modes are calculated as
39 

 )/()(
1

)(
,

)1(
,
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for 237 cm-1 mode:  
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The calculated matrices of polarizability derivatives are the following: 
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 The calculated first order derivatives of the isotropic polarizability, )(
3

1
zzyyxxiso PPPP  are the following: 
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Anisotropic contributions, visible in OKE response,  are the following:  
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OKE response is proportional to       
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IV.  Optical Kerr Effect time signal and the FFT of time signal 

                                                                                        
Fig.S6.   OKE time resolved signal  for C2Cl4 liquid and time derivative of OKE signal     

                                                                                                  
Fig.S7. FFT of the time signal obtained in the Optical Kerr Effect spectroscopy in the frequency range 0-600cm-1, for two temperatures.  

In Fig. S7 we can see the low frequency feature of the spectrum, which reflects the contribution of librational and 

translational intermolecular vibrations. At low temperature the isotope splitting of the symmetric 2 vibrational band 

becomes apparent for two consistent reasons: the vibrational life time gets longer with lowering temperature
39,40

 and free 

rotation of molecules is restricted due to stronger intermolecular interactions. The latter reason means that the rotational 

life time tends to infinity.                                                                                                                                                                                         

39. W. Gadomski and B. Ratajska-Gadomska, Phys. Rev. A, 1986, 34, 1277;                                                                                                                 

40. V. M. Kenkre, A. Tokmakoff, and M. D. Fayer, J. Chem. Phys., 1994, 101 (12), 10618 

                                                                                                                                  
Fig.S8. The dependence of the FFT of the time domain OKE signal on intermolecular interactions, force constant k2.  
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This picture supports our explanation of windowed FFT spectra in Fig.8 (in the main manuscript) and in the section 

below. Diminishing of intermolecular interactions shows the same tendency as succeeding spectra in Fig.8. It means that 

fine structure of 2 band appears when the local structure of molecules and their mutual interactions diminish.  

V.  Windowed Fourier Transform Spectra in Log scale 

 

Fig.S9. The 2 band. Time series of the FFTs, in the log scale, of the time domain signals in Fig.4 (in the main manuscript), TT signal, (left 

plot) and in Fig.6 (in the main manuscript), OKE signal, (right plot). 

 

Fig.S10. The 3 band. Time series of the FFTs, in the log scale, of the time domain signals in Fig.4(in the main manuscript), TT signal, (upper 

plot) and in Fig.6(in the main manuscript), OKE signal, (bottom plot). 


