## **Journal Name**



## ARTICLE

### On the thickness of the double layer in ionic liquids

Anton Ruzanov<sup>a</sup>, Meeri Lembinen<sup>b</sup>, Pelle Jakovits<sup>c</sup>, Satish N. Srirama<sup>c</sup>, Iuliia V. Voroshylova<sup>d,e</sup>, M. Natália D.S. Cordeiro<sup>d</sup>, Carlos M. Pereira<sup>e</sup>, Jan Rossmeisl<sup>f</sup>, and Vladislav B. Ivaništšev<sup>a</sup>\*

#### **Supplementary Information**



**Figure 1**. Integral capacitance dependence on relative potential ( $\Delta U = U - U_{pzc}$ ), calculated using the molecular dynamics data in three different ways: the location of the image plane was set at the gold *nucleus* position (1), within the gold *radius* distance or 0.118 nm (2), and at a *variable* distance from the gold nucleus position (3). The variable distance was set as the gold radius plus the slope  $\Delta x_{im}/\Delta U$  recalculated from [N. B. Luque and W. Schmickler, *Electrochimica Acta*, 2012, 71, 82–85].

## **Journal Name**

# ARTICLE

(a)



| Au | 1.44249771  | 0.83282644  | 10.0000000  |  |
|----|-------------|-------------|-------------|--|
| Au | 4.32749312  | 0.83282644  | 10.00000000 |  |
| Au | 7.21248853  | 0.83282644  | 10.00000000 |  |
| Au | 0.00000000  | 3.33130575  | 10.00000000 |  |
| Au | 2.88499541  | 3.33130575  | 10.00000000 |  |
| Au | 5.76999082  | 3.33130575  | 10.00000000 |  |
| Au | 0.00000000  | 1.66565288  | 12.35558889 |  |
| Au | 2.88499541  | 1.66565288  | 12.35558889 |  |
| Au | 5.76999082  | 1.66565288  | 12.35558889 |  |
| Au | 1.44249771  | 4.16413219  | 12.35558889 |  |
| Au | 4.32749312  | 4.16413219  | 12.35558889 |  |
| Au | 7.21248853  | 4.16413219  | 12.35558889 |  |
| Au | -0.03246745 | 0.00480665  | 14.80640135 |  |
| Au | 2.86988610  | 0.00535387  | 14.82569766 |  |
| Au | 5.75463106  | -0.01037767 | 14.80970414 |  |
| Au | 1.42713721  | 2.48810187  | 14.80970426 |  |
| Au | 4.29502483  | 2.50328587  | 14.80640252 |  |
| Au | 7.19738051  | 2.50383301  | 14.82569763 |  |
| В  | 5.74168425  | 1.66556504  | 17.70996472 |  |
| F  | 6.90230683  | 0.99948319  | 17.11419145 |  |
| F  | 5.72546357  | 3.00606240  | 17.12792288 |  |
| F  | 4.58012218  | 0.98796096  | 17.14923372 |  |
| F  | 5.77301231  | 1.66456445  | 19.05313819 |  |
| В  | 1.41419090  | 4.16404457  | 17.70999733 |  |
| F  | 2.57481191  | 3.49796343  | 17.11419184 |  |
| F  | 1.39796942  | 5.50454168  | 17.12792412 |  |
| F  | 0.25262817  | 3.48644060  | 17.14923361 |  |
| F  | 1.44551852  | 4.16304248  | 19.05310707 |  |

(b)

Au Au



| Au | 7.21248853  | 0.83282644  | 10.00000000 |
|----|-------------|-------------|-------------|
| Au | 0.00000000  | 3.33130575  | 10.00000000 |
| Au | 2.88499541  | 3.33130575  | 10.00000000 |
| Au | 5.76999082  | 3.33130575  | 10.00000000 |
| Au | 0.00000000  | 1.66565288  | 12.35558889 |
| Au | 2.88499541  | 1.66565288  | 12.35558889 |
| Au | 5.76999082  | 1.66565288  | 12.35558889 |
| Au | 1.44249771  | 4.16413219  | 12.35558889 |
| Au | 4.32749312  | 4.16413219  | 12.35558889 |
| Au | 7.21248853  | 4.16413219  | 12.35558889 |
| Au | -0.06913872 | -0.01436392 | 14.81447689 |
| Au | 2.88913356  | -0.01383623 | 14.80156373 |
| Au | 5.73806334  | -0.04455789 | 14.83309858 |
| Au | 1.39608410  | 2.41841509  | 14.81774157 |
| Au | 4.29666156  | 2.46389829  | 14.81273153 |
| Au | 7.18240835  | 2.47801001  | 14.81409675 |
| В  | 5.71113361  | 1.67532724  | 17.81144711 |
| F  | 6.89068226  | 2.33725337  | 17.25991725 |
| F  | 4.53995174  | 2.34137562  | 17.22737990 |
| F  | 5.71362058  | 0.31683219  | 17.29769276 |
| F  | 5.68026741  | 1.71899687  | 19.15835768 |
| В  | 1.41449082  | 4.13786236  | 19.15847074 |
| F  | 2.56878156  | 4.80066040  | 19.22033849 |
| F  | 1.40193389  | 2.80796091  | 19.21849509 |
| F  | 0.26231018  | 4.80390167  | 19.06499309 |
| F  | 1.53493877  | 4.06083247  | 16.51329568 |

**Figure 2.** Optimised geometries of  $BF_4^-$  at charged three layers of gold atoms in total formed the slab representing the Au(111) surface. a) shows Au(111) |  $BF_4^-$  interface model for the *undissociated* system at coverage 1/3 and b) shows Au(111) |  $BF_4^-$  interface model for the *dissociated* system at coverage 1/3. Only the first upper Au layer was allowed to relax, while the two bottom layers were kept fixed in their bulk positions.

Table 1a. Computational data used for calculations

| θ           | W <sub>e</sub> , eV | E <sub>F</sub> , eV | <i>E</i> <sub>0</sub> , eV | -G <sub>int</sub> | Δ <i>U</i> , V | −E <sub>surf</sub> , eV |
|-------------|---------------------|---------------------|----------------------------|-------------------|----------------|-------------------------|
| 1/2 (diss.) | 9.11                | -7.12               | -1.18                      | 2.88              | 4.03           | 2.35                    |
| 1/3 (diss.) | 8.58                | -6.80               | -0.86                      | 0.89              | 3.54           | 2.57                    |
| 1/3         | 9.65                | -7.33               | -0.82                      | 0.93              | 4.61           | 2.45                    |
| 1/4         | 8.90                | -6.96               | -0.71                      | 0.61              | 3.82           | 2.78                    |
| 1/6         | 8.30                | -6.67               | -0.48                      | 0.39              | 3.26           | 2.91                    |
| 1/8         | 7.70                | -6.39               | -0.38                      | 0.28              | 2.59           | 3.03                    |
| 1/12        | 7.25                | -6.14               | -0.26                      | 0.18              | 2.17           | 3.12                    |
| 1/16        | 6.85                | -5.95               | -0.20                      | 0.13              | 1.77           | 3.23                    |
| 1/20        | 6.53                | -5.79               | -0.16                      | 0.10              | 1.43           | 3.19                    |

 $\theta-\text{surface coverage}$ 

 $W_e$  – work function

E<sub>F</sub> – Fermi energy

 $E_0$  - zero energy,  $E_0 = E(N,n) - E(N,0) - nE(\mathsf{BF}_4^-) - nEA(\mathsf{BF}_4^\bullet)$ 

 $G_{\text{int}}$  – integral free energy change per surface metal atom,  $G_{\text{int}} = [nE_{\text{surf}}(BF_4^-) - nE_{\text{cr}}(BF_4^-)]/N$ 

 $\Delta U$  – relative electrode potential calculated from the work function,  $\Delta U = U - U_{pzc}$  ( $U = W_e/e$  and  $U_{pzc}$  is the potential of zero charge)

 $E_{surf}$  - the binding energy of  $BF_4^-$ ,  $E_{surf}(BF_4^-) = [E(N,n) - E(N,0) - nE(BF_4^-) - nEA(BF_4^-)]/n$ 

Table 1b. Computational data used for calculations

| θ           | $C_{	heta}$ | C <sub>G</sub> | Cμ   | C <sub>H</sub> | μ×10 <sup>29</sup> , C*m | d, Å |
|-------------|-------------|----------------|------|----------------|--------------------------|------|
| 1/2 (diss.) | 7.87        | 24.69          | 3.96 | 6.02           | -1.0                     | 2.94 |
| 1/3 (diss.) | 7.53        | 9.81           | 3.75 | 5.91           | -1.4                     | 2.99 |
| 1/3         | 6.61        | 6.05           | 6.59 | 6.02           | -1.8                     | 2.94 |
| 1/4         | 6.01        | 5.84           | 5.83 | 5.92           | -1.0                     | 2.99 |
| 1/6         | 5.61        | 5.06           | 5.61 | 5.88           | -1.2                     | 3.01 |
| 1/8         | 5.57        | 5.72           | 5.37 | 5.90           | -1.4                     | 3.00 |
| 1/12        | 5.27        | 5.22           | 5.14 | 5.70           | -1.7                     | 3.11 |
| 1/16        | 5.06        | 5.56           | 4.99 | 5.62           | -1.8                     | 3.15 |
| 1/20        | 5.18        | 6.91           | 4.97 | 5.67           | -1.9                     | 3.12 |

 $C_{\rm G}$  – integral capacitance calculated using the integral free energy,  $C_{\rm G} = 2\Delta G_{\rm int}/\Delta U^2$ 

 $C_{\theta}$  – integral capacitance calculated using the work function,  $C_{\theta} = qe\theta/A\Delta U$  (*e* is elementary electronic charge, *A* is the area of the unit cell, *q* is the ionic DDEC charge)

 $C_{\mu}$  – integral capacitance calculated using the interfacial dipole moment,  $C_{\mu} = qe\epsilon_0/\mu$  ( $\epsilon_0$  is the permittivity of vacuum,  $\mu$  is dipole moment)

 $C_{\rm H}$  – integral capacitance based on the Helmholtz model,  $C_{\rm H} = \epsilon \epsilon_0/d$  ( $\epsilon$  is the high-frequency dielectric constant of 2.0, d is the distance from the position of the nearest layer of Au nuclei to the layer of B nuclei)

 $\mu$  – interfacial dipole moment

*d* – distance from the position of the nearest layer of Au nuclei to the layer of B nuclei



**Figure 4.** Electrostatic potential dependence on the distance for Au(111) |  $BF_4^-$  interface model at coverage 1/6.  $\Delta U = U - U_{pzc}$  is electrode potential calculated from the work function  $W_e$  as  $U = W_e/e$  (here *e* is the elementary electronic charge) and the potential of zero charg ( $U_{pzc}$ ). The potential drop is calculated between the vacuum energy level and the Fermi level. The latter is determined by the electronic structure of the gold slab.

#### Input file example

from ase import \* from ase.calculators.vdwcorrection import vdWTkatchenko09prl from ase.constraints import FixAtoms from ase.io import write from ase.lattice.surface import fcc111, add\_adsorbate from ase.optimize import QuasiNewton from ase.units import Bohr from gpaw import \* from gpaw.analyse.hirshfeld import HirshfeldPartitioning from gpaw.analyse.vdwradii import vdWradii from gpaw.dipole correction import DipoleCorrection from gpaw.poisson import PoissonSolver from gpaw.utilities import h2gpts # Define geometry of slab + BF4: slab = fcc111('Au', size=(3, 2, 3),orthogonal=True) slab.center(axis=2, vacuum=12) d=0.8 tFB1 = Atoms([Atom('B', (0, 0, 0)), Atom('F', (d, d, d)), Atom('F', (-d, -d, d)), Atom('F', (-d, d, -d)), Atom('F', (d, -d, -d))]) tFB1.rotate('y',pi/4,center=(0, 0, 0)) tFB1.rotate('x',asin(1/sqrt(3))+pi,center=(0, 0, 0)) tFB1.rotate('z',pi/3,center=(0, 0, 0)) tFB1.translate(slab.positions[8]+(0.,0.,5.118)) tFB2 = Atoms([Atom('B', (0, 0, 0)), Atom('F', (d, d, d)), Atom('F', (-d, -d, d)), Atom('F', (-d, d, -d)), Atom('F', (d, -d, -d))]) tFB2.rotate('y',pi/4,center=(0, 0, 0)) tFB2.rotate('x',asin(1/sqrt(3)),center=(0, 0, 0)) tFB2.rotate('z',0,center=(0, 0, 0)) tFB2.translate(slab.positions[9]+(0.,0.,6)) slab += tFB1 slab += tFB2

mask = [atom.tag > 1 for atom in slab]
#print mask
slab.set\_constraint(FixAtoms(mask=mask))

calc = GPAW(xc='RPBE', mode='fd', kpts=(4, 4, 1), gpts=h2gpts(0.16, slab.get\_cell(), idiv=8), txt='t32.txt', convergence={'energy':0.005,'eigenstates':1.0e-7}, poissonsolver=DipoleCorrection(PoissonSolver(relax='GS'), 2) ) # Fix second and third layers: mask = [atom.tag > 1 for atom in slab] #print mask slab.set\_constraint(FixAtoms(mask=mask)) slab.center(axis=2, vacuum=14) slab.set\_calculator(calc) slab.get\_potential\_energy() vdw = vdWTkatchenko09prl(HirshfeldPartitioning(calc),vdWradii(layer.get\_chemical\_symbols(), 'RPBE')) slab.set calculator(vdw) slab.get\_potential\_energy() qn=QuasiNewton(slab,trajectory='t32.traj',restart='t32.pckl') qn.run(fmax=0.05) calc.write('t32.gpw') rho=slab.calc.get\_all\_electron\_density(gridrefinement=4) \* Bohr\*\*3 write('t32.cube',slab,data=rho)



**Figure 5.** a) Born-Haber cycle describing the interaction energies of  $EMImBF_4$  on Au(111) surface. b) Equivalent circuit of the cycle.

**Table 2.** Comparison of Voronoi, Bader, and DDEC charge analyses. The inset shows the modelled system: four layers of EMImBF<sub>4</sub> above three layered Au(111) slab. Ionic liquid and the upper slab layer were relaxed at the DFT/RPBE+vdW level of theory. The Voronoi charge is affected by the construction of the Voronoi cell; the Voronoi method underestimates the cationic charge in comparison to Bader's and DDEC methods.

|                                     | Voronoi ( <i>e</i> ) | Bader ( <i>e</i> ) | DDEC ( <i>e</i> ) |
|-------------------------------------|----------------------|--------------------|-------------------|
| Anion in the 4 <sup>th</sup> layer  | -0.86                | -0.96              | -0.82             |
| Anion at the surface                | -0.72                | -0.96              | -0.87             |
| Cation in the 4 <sup>th</sup> layer | +0.71                | +0.96              | +0.86             |
| Cation at the surface               | +0.23                | +0.90              | +0.80             |
| Au slab / per ion                   | +0.63                | +0.06              | +0.02             |



Au-EMImBF<sub>4</sub> interface