Supporting Information

Combinatorial Selection of Two-dimensional 3*d*-TM– tetracyanoquinodimethane (TM–TCNQ) Monolayer as High-Activity Nanocatalysts for CO Oxidation

Qingming Deng^{a,b}, Tiantian Wu^b, Guibin Chen^a, Heine Anton Hansen^{b*}, Tejs Vegge^{b*}

^{a.} Physics department and Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, China.
^{b.} Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, 2800 Kgs. Lyngby, Denmark.

	E _{diff}	Dist(TM-N)	Mag(µb)	Lattice(a)	Lattice(b)
Sc	-4.33	2.111	0	7.20	11.74
Ti	-3.31	2.064	1.506	7.22	11.54
V	-3.49	1.999	2.547	7.15	11.42
Cr	-3.56	1.978	3.395	7.11	11.40
Mn	-1.6	1.902	2.621	7.01	11.30
Fe	-2.61	1.842	1.586	6.93	11.20
Со	-2.52	1.822	0	6.88	11.19
Ni	-2.26	1.91	0.721	7.04	11.25
Cu	-2.18	1.974	0	6.92	11.15
Zn	-3.16	2.019	0	7.19	11.40

Table S1. Energy difference (E_{diff}) between embedding energy and cohesive energy in eV, distance (Dist) of TM and N atoms, magnetic moment (Mag) and lattice constant a and b of TM-TCNQ in Å.

Figure S1. The configurations with DFT energy of the limiting step for CO oxidation reaction via LH mechanism on Mn-TCNQ.

On the Mn-TCNQ surface, the first activation energy of the rate-limiting step via ER mechanism is ca. 1.1 eV with CO₃ formation. While the barrier decreased to 0.94 eV via LH mechanism leading to OOCO formation as shown as in Fig.S2. By comparison of Sc-TCNQ, the structural parameter of the transition state (TS1) is quite different. The distance of labeled O1 and C1 (1.944Å) is longer than the one on Sc-TCNQ (1.352Å). When O1 and C1 forms a chemical bond (1.356 Å), the energy significantly decreases from 0.94eV to -0.25eV. Therefore, the configuration of TS1 on Mn-TCNQ is in between the IS1 and MS, but the one is quite similar with its TS1 on Sc-TCNQ.

Figure S2. Reaction free energy profiles for CO oxidation catalyzed for the first by Sc-TCNQ via the LH mechanisms at 0 and 300K.

The coordination of Sc-TCNQ

data NScCH _audit_creation_method 'pos2cif.pl' 7.20086529337548 11.7404748762091 _cell_length_a _cell_length_b _cell_length_c 24.8760702066498 _cell_angle_alpha 90.0997535076421 90.0362451130867 _cell_angle_beta 89.9897918373574 cell angle gamma ______symmetry_space_group_H-M 'P1' _symmetry_Int_Tables_number '1' symmetry cell setting 'triclinic' loop_ symmetry equiv pos as xyz x,y,z loop _atom_site_label _atom_site_type_symbol _atom_site_occupancy _atom_site_fract x _atom_site_fract_y _atom_site_fract_z atom site U iso or equiv N1 N 1.0000 0.69345 0.35615 0.12879 0.0000 N2 N 1.0000 0.26939 0.60452 0.12717 0.0000 N3 N 1.0000 0.69336 0.60448 0.12642 0.0000 N4 N 1.0000 0.26903 0.35651 0.12836 0.0000 Sc1 Sc 1.0000 0.48140 0.48036 0.12792 0.0000 C1 C 1.0000 0.82226 0.66807 0.12614 0.0000 C2 C 1.0000 0.98134 0.73407 0.12606 0.0000 C3 C 1.0000 0.14033 0.66797 0.12656 0.0000 C4 C 1.0000 0.14902 0.92106 0.12692 0.0000 C5 C 1.0000 0.98157 0.85941 0.12628 0.0000 C6 C 1.0000 0.81421 0.92117 0.12614 0.0000 C7 C 1.0000 0.82238 0.29254 0.12854 0.0000 C8 C 1.0000 0.98153 0.22653 0.12815 0.0000 C9 C 1.0000 0.14038 0.29272 0.12827 0.0000 C10 C 1.0000 0.14910 0.03941 0.12750 0.0000 C11 C 1.0000 0.98170 0.10117 0.12746 0.0000 C12 C 1.0000 0.81428 0.03950 0.12669 0.0000 H1 H 1.0000 0.28109 0.87525 0.12705 0.0000 H2 H 1.0000 0.68209 0.87546 0.12569 0.0000 H3 H 1.0000 0.28127 0.08506 0.12800 0.0000 H4 H 1.0000 0.68213 0.08522 0.12651 0.0000