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1. Phonon spectrum of AA-, AB-stackingbilayer GeSe

To further validate the dynamical stabilities of the bilayer GeSe for AA-, AB-stacking order, we 

calculate the phonon spectrum of them. As shown in Fig. S1, no imaginary frequency is found in the 

phonon spectrum, which proves that AA-, AB-stacking is stable.

Fig. S1. Phonon spectrum of different stacking bilayer GeSe, (a) AA-stacking, (b) AB-stacking.
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2. Tuning the band gap of AA-, AC-, AD-stacking bilayer GeSe by strain

In Fig. S2, we show our calculated results for the variationsband gap in the AA-, AC-, AD-

stacking configurations under in-plane strain. As can be found in Fig. S2(a), when applying strain 

along x direction from -8% to 8%, the band gap of the AA-stacking bilayer GeSe is almost linear 

increased from 0.66 eV to 1.32 eV. Moreover, when the AA-stacking structure is stretched along x 

Fig. S2.The variation of band gap under in-plane strains.The value range of σ is from -8% to 8%. The 

positive and negative value corresponds to the stretching and compression strain, respectively. (a)-(c) 

indicate the results of AA stacking bilayer under strains along different directions, (a) σx, (b) σz, and 

(c) σxz, respectively. (d)-(f) indicate the results of the AC stacking bilayer under strains along different 

directions, (d) σx, (e) σz, and (f) σxz, respectively. (g)-(i) indicate the results of the AD stacking bilayer 

under strains along different directions, (g) σx, (h) σz, and (i) σxz, respectively. 
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direction, the AA-stacking configuration maintains the feature of indirect band gap. However, if the 

compressive strain from -6% to -3% along x direction is applied, the indirect band gap of AA-

stacking configuration is tuned to direct band gap. For the strain along z direction in the AA-stacking 

configuration, as can be found in Fig. S2(b), when compressive strain is applied, the band gap of 

AA-stacking is linear increased and is always kept indirect band gap. However, when AA-stacking 

configuration is stretched along z direction from 0% to 5%, the band gap of AA-stacking keeps 

direct band gap and is increased from 0.94 eV to 1.21 eV. While for the stretched strain form 5% to 8% 

along z direction, the band gap is decreased from 1.21 eV to 1.13 eV and is changed to indirect band 

gap. The variation of band gap of AA-stacking bilayer GeSe under biaxial strains almost similar with 

that under the strain along z direction. Their slight difference is that the range of increased direct 

band gap is from 0% to 4% when applying biaxial strain.  

In Fig. S2(d, e, f), we show the variations of band gap of AC-stacking configuration under in-

plane strain. As shown in Fig. S2(d), the band gap of AC-stacking is increased from 0.46 eV to 1.26 

eV when the strain from -8% to 8% along x direction is applied. In addition, the inherent indirect 

band gap of AC-stacking is converted to direct band gap when applying -5%-0% compressed strain 

or  3%-8% stretched strain. While applying stretched strain along x direction from 0%-2% or 

compressed strain from -6% to -8%, the AC-stacking is indirect band gap. For the z-uniaxial strain, 

the variation of band gap is very similar with that in AA-stacking GeSe bilayer, as can be found in 

Fig. S2(e). The band gap of AC-stacking is also linear increased when applying strain from -8% to 5% 

and is decreased under strain from 5% to 8%. The type of band gap is indirect when applying strain 

from -8%-0% and 5%-8%. However, it will be changed to direct band gap when applying strain from 

0%-5%. As shown in Fig. S2(f), the variation of band gap under the applied biaxial strain in AC-

stacking is almost similar with that under the applied strain along the z direction. The band gap is 

increased from 0 eV to 1.36 eV when applying biaxial strain from -8% to 6% and is later slightly 

decreased from 1.36 eV to 1.29 eV when biaxial strain is increased from 6% to 8%. The direct band 
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gap of AC-stacking appears under stretched strain from 0% to 6%. When the biaxial strain is applied 

from -8% to 0% and 6% to 8%, the AC-stacking keeps indirect band gap.

The variations of band gap of AD-stacking configuration under in-plane strain are plotted in Fig. 

2(g, h, i). In Fig. S2(g), we find that the band gap of AD-stacking is almost linearly increased and 

maintains direct when applying strain along x direction from -8% to 8%, which is very similar with 

that in AB-stacking. For the single axial strain along z direction, the variation of band gap is also 

similar with that in AB-stacking. As can be found in Fig. S2(h), the band gap is increased linearly 

from 1.13 eV to 1.41 eV when applying stretched strain from 0% to 7% and maintains direct band 

gap in this range. However, when the stretched strain continues to be increased from 7% to 8%, the 

band gap is decreased and has been changed to indirect. While the compressed strain is applied from 

0% to -8%, the band gap is rapidly decreased to 0 eV and always keeps indirect band gap under the 

compressed strains. Under biaxial strain, the tuning situation of band gap in AD-stacking GeSe 

bilayer is similar with that in the case under the tuning along z-direction.  

In summary, our results show that the inherent indirect band gap of AA-stacking can be tuned to 

direct under small strain along biaxial or unaxial z direction. However, the tuned range of the direct 

band gap is narrow under the applying in-plane strains. Moreover, when the stretched strain is larger 

than 5% along zigzag direction and the stretched strain is larger than 4% along biaxial direction, the 

band gap is found decreasing. The variation of band gap in AC-, AD-stacking is similar with that in 

AB-stacking when applying in-plane strain. The transition between the direct to indirect band gap is 

observed under some special values of strain, which does not exist in the case of AB-stacking. For 

example, in the AC-stacking case, the transition from direct to indirect band gap is always found 

only if the compressive uniaxial strain along the armchair direction is larger than -7%. 

3. about the van der Waals functionals
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Functional a(Å) b(Å) Band gap(eV)
PBE 4.31 3.96 1.03*

PBE [Ref. S1] 4.31 3.97 1.02*
vdW-DF 4.74 3.91 1.49
vdW-DF2 4.82 3.96 1.55
DFT-D2 4.40 3.88 0.98

TS 4.37 3.94 1.06*
Bulk(Exp) [Ref. S2] 4.37 3.81 1.08

Exp. [Ref. S3] *

Before our calculations, we have tested the accuracy of the vdW types to obtain the suitable 

lattice constants and band gap of  AB-stacking GeSe. The obtained results from using different vdW-

correlation functions such as vdW-DF [S4], vdW-DF2 [S5], semiempirical Grimme’s DFT-D2 [S6] 

and Tkatchenko-Scheffler (TS) dispersion corrections [S7], are summarized in Table S1. Without 

vdW-correction, the obtained lattice constants are a=4.31 Å and b =3.96 Å, respectively. We also 

obtained a direct band gap with the energy gap of 1.03 eV, which is agree with previous report [S1]. 

When the vdW-DF and vdW-DF2 functionals are used, the lattice constant has a large change 

comparing to the experimental data of bulk GeSe. Moreover, the type of band gap is different with 

reported experimental result [S3] in bilayer GeSe, which possesses a direct band gap. The lattice 

constants obtained from DFT-D2 and TS functionals are close to the experimental data of bulk GeSe. 

However, the type of band gap is indirect when using DFT-D2 function. By our test, only the 

calculation using TS functional predicts the direct energy gap. Hence, we choose TS functional to 

discuss the stacking and strain effect on the studied GeSe bilayers. 
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