SUPPLEMENTARY INFORMATION

Aerogen Bonds Formed between AeOF₂ (Ae = Kr, Xe) and Diazines: Comparisons between σ -Hole and π -Hole Complexes

Wiktor Zierkiewicz,*1 Mariusz Michalczyk1 and Steve Scheiner*2

¹ Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

² Department of Chemistry and Biochemistry, Utah State University Logan, Utah 84322-0300, United States

*Correspondence to: wiktor.zierkiewicz@pwr.edu.pl, steve.scheiner@usu.edu

	vdW ^a	vdW ^b	Covalent radii ^c					
N	1.55	1.66	0.71					
Kr	2.02	2.25	1.16					
Xe	2.16	2.06	1.40					
F	1.47	1.46						
Н	1.20	1.20						
0	1.52	1.50						
Sum N…Kr	3.57	3.91	1.87					
Sum NXe	3.71	3.72	2.11					
Sum FH	2.67	2.66						
Sum O…H	2.72	2.70						

Table S1. vdW and covalent radii of the N, Kr and Xe atoms, in Å

^a from ref. [83]

^b from ref. [84]

^c from ref. [85]

Fig. S1 AIM molecular graphs of π -hole bonded AeOF₂ (Ae = Kr, Xe) complexes with diazines. Small green dots represent critical points. Results obtained at the MP2/aug-cc-pVDZ level.

TABLE S2. Second-order NBO perturbation energies (E²) for charge transfer between indicated orbitals in π -hole bonded AeOF₂ (Ae = Kr, Xe) complexes with diazines (kcal mol⁻¹). Results obtained at DFT level.

System	LP(N1)→σ*AeF2	LP(F1)→σ*C2H2	LP(O)→RyN1	
pyrazineKrOF ₂ (π)	2.28	0.58	-	
pyrimidineKrOF ₂ (π)	2.48	0.61	-	
pyridazineKrOF ₂ (π) ^a	2.00	0.72	-	
pyrazineXeOF ₂ (π)	2.04ª	0.33	0.15	
pyrimidineXeOF ₂ (π)	1.69ª	0.35	0.20	
pyridazineXeOF ₂ (π)	0.41	-	0.26	

^a transfer into unfilled valence nonbonding orbital.

Fig. S2 Plots of the RDG versus sign $(\lambda_2)\rho$ and noncovalent interaction regions (bonding isosurfaces are illustrated as green and blue disks while red parts represent repulsive forces) for the π -hole bonded AeOF₂ (Ae=Kr, Xe) complexes with diazines.

TABLE S3. EDA/BLYP/ZORA/TZ2P decomposition of the total DFT-D interaction energy (ΔE) of σ complexes into Pauli repulsion (E_{Pauli}), electrostatic (E_{elstat}) orbital interaction (E_{oi}) and dispersion (E_{disp})
terms. All energies in kcal mol⁻¹. The values in percent express the contribution to the sum of all
attractive energy terms.

	ΔΕ	E _{Pauli}	E _{elec}	%	Eoi	%	Edisp	%
pyrazine KrOF ₂	-6.60	9.54	-9.75	60	-3.09	19	-3.30	20
pyrimidine KrOF ₂	-6.75	9.57	-9.91	61	-3.14	19	-3.28	20
pyridazine KrOF ₂	-8.27	10.77	-11.21	59	-4.56	24	-3.27	17
pyrazine XeOF ₂	-6.87	11.25	-10.37	57	-3.68	20	-4.07	22
pyrimidine XeOF ₂	-7.01	11.13	-10.31	57	-3.66	20	-4.16	23
pyridazine XeOF ₂	-8.82	13.24	-13.36	61	-4.88	22	-3.82	17

Fig. S3 Electron density shift in π -hole bonded AeOF₂ (Ae = Kr, Xe) complexes with diazines. The brown isosurface represents the regions in which electron density is increased as a result of complex formation (+0.001 a.u.), while the purple contour denotes decrease (-0.001 a.u.). Results obtained at the MP2/aug-cc-pVDZ level.