Factors impacting the aggregation/agglomeration and the photocatalytic activity of highly crystalline spheroid- and rod-shaped TiO₂ nanoparticles in aqueous solutions

Thomas Degabriel, Elodie Colaço, Rute F. Domingos, Karim El Kirat, Dalil Brouri, Sandra Casale, Jessem Landoulsi, Jolanda Spadavecchia

Electronic Supporting Material

1. Synthesis of TiO₂ nanoparticles

Table S1. Concentration of the main reagents and the corresponding molar concentration ratios used for the synthesis of TiO_2 nanoparticles.

Concentration of reagents (M)			Molar concentration ratios		
AA	TTIP	BzOH	[AA] / [BzOH]	[BzOH] / [TTIP]	
Nano-spheres*					
-	0.96	6.86	-	7.12	
-	0.67	7.69	-	11.42	
-	0.56	8.00	-	14.24	
Nano-rods*					
1.59	0.61	6.99	0.23	11.42	
2.26	0.59	6.69	0.34	11.42	
0.82	0.64	7.33	0.11	11.42	
2.88	0.56	6.41	0.45	11.42	
0.69	0.54	7.68	0.09	14.24	
0.56	0.54	7.74	0.07	14.24	
0.42	0.55	7.80	0.05	14.24	
0.28	0.55	7.87	0.04	14.24	
0.14	0.56	7.93	0.02	14.24	
1.34	0.52	7.38	0.18	14.24	
2.18	0.84	6.00	0.36	7.12	
0.66	0.93	6.59	0.10	7.12	
2.70	0.81	5.78	0.47	7.12	

* expected shape of TiO₂ nanoparticles

Figure S1. Schematic representation of the crystalline structure showing the [101] plane.

Figure S2. Additional HRTEM micrography of rod-shaped TiO2 nanoparticles. The orientation of crystallographic plans [101] and [004], identified by Inter reticular distances measurement from FFT and line profile, is consistent with a growth along the c-axis.

2. Photocatalytic activity

The rate of photocatalytic reaction, r, may be determined using the Langmuir-Hinshelwood model 1,2

$$r = \frac{k_r K_a C}{1 + K_a C} \approx k_r K_a C = k_{app} C$$

This equation may be simplified to pseudo-first order equation as follows:

$$Ln\left(\frac{C}{C_0}\right) = -k_{app}t$$

With C_0 the initial concentration, C the concentration at time, k_r the reaction rate constant, K_a the adsorption constant and k_{cat} the apparent first-order rate constant. The pseudo-first order rate constants, k_{cat} , were thus determined from data in Figure 8 using an exponential fitting

Figure S3. Photocatalytic degradation curves of methylene blue using (\bullet, \bigcirc) spheroid and (\blacksquare, \bigcirc) rod-shaped nanoparticles in NaCl electrolyte at concentrations of 6 (closed symbols) or 100 mM (open symbols), and in CaCl₂ electrolyte at concentrations of 3 (closed symbols) or 50 mM (open symbols).

Table S2. Adsorption of methylene blue on spheroid and rod-shaped TiO_2 nanoparticles in NaCl or CaCl₂ electrolytes after 1 h of incubation. (bdl = below detection limit).

		Adsorption (%)	
Electrolyte / concentra	tion (mM)	Rods	Spheroids
N _a C1	6	0.74	0.74
NaCi	100	1.1	3.8
C-C1	3	3.4	bdl
CaCI ₂	50	5.1	4.8

References

- 1. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard and J.-M. Herrmann, *Applied Catalysis B: Environmental*, 2001, 31, 145-157.
- 2. K.-H. Wang, Y.-H. Hsieh, C.-H. Wu and C.-Y. Chang, *Chemosphere*, 2000, 40, 389-394.