Electronic Supplementary Information

Chemically Accurate Adsorption Energies for Monolayers of Methane and

Ethane on the MgO(001) Surface

Maristella Alessio, Florian A. Bischoff and Joachim Sauer*

Institut für Chemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin,

Germany

Table of contents

S1. Many-body expansions within hybrid QM:QM calculations	2
S2. DFT cluster calculations with VASP/plane waves and TURBOMOLE/	Gaussian basis
sets	3
S3. Rumpling of the surface atoms	4
S4. BLYP+D2 results	4
S5. Basis set extension effects on CCSD(T) results	6
S6. Reference energies derived from experiment	7

S1. Many-body expansions within hybrid QM:QM calculations

Part of the MonaLisa code¹ is an implementation of the fragment-based^{2, 3} QM:QM scheme for large condensed-phase systems consisting of individual monomers. In our approach we combine a many-body expansion (MBE) at MP2 level with a periodic calculation at DFT+D2 level. The MBE is performed decomposing the periodic system into a certain number of monomers and it is truncated at the two-body terms. The method treats the monomers in the central unit cell and their short-range two-body interactions (with just one or both monomers belonging to the central unit cell) at MP2 level, while the long-range two-body interactions and the many-body interactions are described by a periodic DFT+D2 calculation. The hybrid energy is expressed via subtractive scheme:

$$E_{\text{HL:LL}}(\text{pbc}) = E_{\text{LL}}(\text{pbc}) - E_{\text{LL,MBE}}(\text{C}) + E_{\text{HL,MBE}}(\text{C})$$
(1)

The low-level energy of the periodic system, $E_{LL}(pbc)$, is corrected by subtracting two separated calculations: the high-level energy, $E_{HL,MBE}(C)$, and the low-level energy, $E_{LL,MBE}(C)$, both computed trough the same many-body expansion at MP2 and DFT+D2 level, respectively. The MBE energy

$$E_{\text{MBE}}(C) = \sum_{i}^{Z} E_{i} + \sum_{i}^{Z} \sum_{j>i}^{Z} \Delta E_{ij} + \frac{1}{2} \sum_{i}^{Z} \sum_{j_{n}}^{images} \Delta E_{ij_{n}}$$
(2)

is expressed as a sum of monomer energies, E_i, and two-body interaction energies,

$$\Delta E_{ij} = E_{ij} + E_i - E_j \tag{3}$$

where E_{ij} represents the energy of the dimer ij, composed of the *i*th and *j*th monomer. The *i* and *j* indices run over all *Z* monomers in the central unit cell and j_n runs over all periodic image monomers in the *n*th image cell. The summation includes all the two-body interactions within a cut-off in each lattice vector direction (at user's discretion) and creates a supercell of two-body interactions.

We compute many-body counterpoise corrected (MBCP) energies as suggested by Stein and Sauer.⁴ The BSSE (ϵ) for a MBE truncated after two-body terms is given by:

$$\varepsilon = \sum_{i}^{Z} \sum_{j \neq i}^{Z} (E_{i\{j\}} - E_i)$$
(4)

In the notation the subscript index " $i\{j\}$ " refers to the *i*th monomer in presence of the basis set of the dimer *ij*. The counterpoise corrected many-body energy, E_{MBCP} , is obtained by:

$$E_{\rm MBCP} = E_{\rm MBE} + \varepsilon \tag{5}$$

MonaLisa allows extrapolations to the CBS limit of counterpoise corrected many-body energies and gradients, according to the CPC-CBS scheme.

S2. DFT cluster calculations with VASP/plane waves and TURBOMOLE/Gaussian basis sets

Table S1 shows the PBE results for the adsorption cluster models obtained with VASP/plane waves and TURBOMOLE/Gaussian (def2-TZVP and def2-QZVP) basis set. The def2-QZVP adsorption energies are in good agreement to the plane waves ones, while def2-TZVP values deviate of -1.4 and -0.5 kJ/mol for $CH_4 \cdot Mg_9O_9$ and $C_2H_6 \cdot Mg_{12}O_{12}$, respectively. DFT calculations performed with def2-TZVP basis sets and with plane waves approach to the same low-level of theory within an uncertainty of -0.9 ± 0.4 kJ/mol.

Table S1 PBE adsorption energies, ΔE , for the CH ₄ ·Mg ₉ O ₉ and C ₂ H ₆ ·Mg ₁₂ O ₁₂ cluster cut out
from the corresponding MP2:PBE+D2 equilibrium structures of the low coverage systems, in
kJ/mol. Results obtained with plane waves (energy cut off, 600 eV and computational box,
15x15x25 Å) are compared to results with def2-TZVP and def2-QZVP Gaussian basis set. ^a

	CH₄·Mg ₉ O ₉ ^b			_			C₂H ₆ ·I	Mg ₁₂ O ₁₂ ^b	I	
PBE	pw-600	def2-QZVP	def2-TZVP	_	pw-	-600	def	2-QZVP	def2	2-TZVP
ΔΕ		-2.9	-3.2					-3.4	-	5.3
$\Delta E_{\rm CPC}$	-2.5	-2.5	-1.1		-2	2.9		-2.9	-	2.4

^a Not BSSE- and BSSE-corrected results are reported when Gaussian basis sets are the computational choice. ^b At the hybrid MP2:PBE+D2 minima of the low coverage CH_4 ·MgO(001) and C₂H₆·MgO(001) system.

S3. Rumpling of the surface atoms

The PBE+D2 Mg-O equilibrium distance in the MgO(001) slab model compared to the PBE+D2 bulk optimized value (212 pm) increases to 215 pm for the terrace O^{2^-} ions and decreases to 210 pm for terrace Mg²⁺ ions, which shows a surface relaxation effect and a small rumpling of the surface atoms of 1%, as also experimentally observed.⁵ With the adsorption of the CH₄ monolayer, the PBE+D2 Mg-O distance for the occupied Mg²⁺ sites increases to 211 pm, and for the unoccupied ones it decreases to 209 pm corresponding to an even more complex surface rumpling effect. The surface O^{2^-} ion positions are not altered, as also previously reported in the work of Tosoni and Sauer.⁶

Fig. S1 Sketches of the rumpling effects (side view, distances in pm) of the MgO(001) slab on the left and of the $CH_4(1ML) \cdot MgO(001)$ system on the right. Color code: magnesium - green, oxygen - red and carbon - black.

S4. BLYP+D2 results

Bulk structure optimizations.

Table S2 Lattice parameters a and R(Mg-O) distances in Å obtained with PBE+D2 and BLYP+D2.

	PBE+D2	BLYP+D2	Exp ⁷
a	4.239	4.252	4.210
R(Mg-O)	2.119	2.126	2.105

Adsorption energies.

Table S3 $R(Mg^{2+}...C)$ distances in pm, adsorption energies, ΔE , dispersion energy contributions, ΔE_D , adsorbate-surface interactions, ΔE^* , and lateral interactions, ΔE_L obtained with BLYP+D2.

Θ = 1	CH₄·MgO ^a	$CH_4 \cdot MgO^b$	C ₂ H ₆ ·MgO ^{b,c}
<i>R</i> (Mg ²⁺ …C)	313	312	322/322
ΔΕ	-9.5	-9.5	-19.6
ΔE _D	-20.0	-20.3	-43.7
ΔE^*	-6.2	-6.1	-8.7
ΔE _L	-3.3	-3.3	-10.9

^a Computed for BLYP+D2 and ^b PBE+D2 lattice parameters. ^c Distances between the carbon atoms of the methyl groups pointing toward the surface and the closest terrace Mg²⁺ ions. Each distance is twice repeated.

Relaxed potential energy curves including high-level corrected lateral interactions. Fig. S2. shows the BLYP+D2 and MP2/CPC-CBS(D,T):BLYP+D2 adsorption energies for CH₄ and C₂H₆ as a function of the adsorbate monolayer-surface distance (*R*). For CH₄·MgO(001) the BLYP+D2 minimum is located at *R* =317 pm with ΔE = -9.4 kJ/mol and the MP2:BLYP+D2 minimum at *R* = 295 pm with ΔE = -18.8 kJ/mol. For C₂H₆·MgO(001) the BLYP+D2 minimum is found at *R* = 320 pm with ΔE = -19.6 kJ/mol and the MP2:BLYP+D2 minimum at *R* = 303 pm with ΔE = -30.0 kJ/mol. BLYP+D2 minima reproduce the results obtained by full BLYP+D2 optimizations in Table S3.

Fig. S2 BLYP+D2 and hybrid MP2/CPC-CBS(D,T):BLYP+D2 potential energy curves for high coverage CH_4 ·MgO(001) and C_2H_6 ·MgO(001) system as a function of the adsorbate monolayer-surface distance (*R*).

S5. Basis set extension effects on CCSD(T) results

In a previous work⁸ on the CH₄·MgO(001) system, an attempt has been made to estimate the basis set extension effect using smaller clusters that are charged and, hence, require point charge embedding. The latter, in turn, suffers from over-polarization effects. Nevertheless, the result -0.9 kJ/mol (double-zeta for the embedded Mg₉O₉ cluster) plus -0.7 \pm 0.1 kJ/mol (the increment for increasing the basis set to triple-zeta) gives -1.6 kJ/mol, that was 0.2 \pm 0.1 kJ/mol larger than the double-zeta result for the non-embedded Mg₉O₉ cluster. In the current work CCSD(T)/T-zeta results could be completed only for the CH₄·Mg₉O₉ cluster at the MP2:PBE+D2 equilibrium structure of the high coverage CH₄·MgO(001) system. The CCSD(T) correction to the MP2 result increases of 0.5 kJ/mol with the basis set quality from double-zeta to triple-zeta, see Table S4.

MP2:PBE+D2 equilibrium structure. ^a						
	MP2	CCSD	CCSD -MP2	CCSD(T)	CCSD(T) - CCSD	CCSD(T) - MP2
D	-9.2	-9.6	-0.4	-11.5	-1.9	-2.3 (-0.9) ^c
т	-11.9	-12.2	-0.3	-14.7	-2.5	-2.7
CBS(D,T)	-13.1	-13.3	-0.2	-16.0	-2.7	-2.9
T-D	-2.7	-2.6	0.1	-3.2	-0.6	-0.5 (-0.7 ± 0.1) ^c

Table S4 Counterpoise corrected MP2, CCSD and CCSD(T) adsorbate-surface interaction energies, ΔE^* , in kJ/mol of the high coverage CH₄·MgO(001) system calculated at the MP2:PBE+D2 equilibrium structure.^a

^a The adsorbate-surface interactions are computed with the triple-zeta basis set level (aug'cc-p(C)TZV).^b Θ = 1, *R* = 312 pm. ^c In parenthesis results of Boese and Sauer⁸ for point charge embedded clusters of the CH₄(Θ = 0.25)·MgO(001) system.

S6. Reference energies derived from experiment

As described in previously, ^{6, 9} desorption enthalpies, ΔH_T , are obtained from Arrhenius desorption barriers, E_A , according to¹⁰

$$\Delta H_T = E_A - RT. \tag{6}$$

Using statistical mechanics with vibrational energies obtained from DFT calculations desorption energies are obtained from observed enthalpies,

$$\Delta E = \Delta H_T - \Delta \Delta_T E - RT - \Delta E_{ZPV}, \tag{7}$$

which we use as reference values for assessing the calculated desorption energies.

For CH₄ we derive an adsorption energy of 15.0 kJ/mol from the experimental desorption barrier of 12.6 kJ/mol, with an uncertainty estimate of \pm 0.6 kJ/mol. This we get from half of the difference between the vibrational corrections from refs. 8 and 6 (0.25 kJ/mol) and half of the difference of the Δ E values derived from the two different experiments (0.35 kJ/mol, see also ref. 6) Previous estimates^{6, 8} fall into the uncertainty limit specified.

Table S5 Observed Arrhenius desorption barriers, E_A in kJ/mol, observed desorption temperatures, T in K, and desorption energies derived from experiment, ΔE , in kJ/mol for monolayer coverage ($\Theta = 1$).

	C₂H ₆ ∙MgO		CH ₄ ·	MgO	
	This work	This work	Ref. 8	Ref	. 6
E _A	22.76	12.63	12.63	12.6	13.1
R <i>T (T)</i>	0.62 (75)	0.39 (47)	0.39 (47)	0.4 (47)	0.3 (40)
$\Delta H_T = E_A - RT^{a}$	22.14	12.24	12.24	12.2	12.8
$\Delta H_0 = \Delta H_T - \Delta \Delta_T E - RT^{\rm b}$	21.10	11.18	11.26	11.1	
ΔE _{ZPV} ^c	-3.32	-3.81	-3.56	-4.2	
$\Delta E = \Delta H_0 - \Delta E_{ZVP}^{d}$	24.42	14.98	14.82	15.3	16.0
ΔE , final estimate	24.4 ± 0.6	15.0 ± 0.6	15.1 ± 0.6	15.3 ± 0.4	

^a Enthalpies at temperature *T*. ^b Enthalpies at 0 K, $\Delta\Delta_{T}E$ is the thermal energy change. ^c Zeropoint vibrational energy. ^d Desorption energies derived from experiment.

REFERENCES

- 1. F. A. Bischoff, M. Alessio, M. John, M. Rybicki and M. Sauer, Multi-Level Energy Landscapes: The MonaLisa Program., Humboldt-University of Berlin, 2017, https://www.chemie.hu-berlin.de/de/forschung/quantenchemie/monalisa/.
- 2. S. H. Wen, K. Nanda, Y. H. Huang and G. J. O. Beran, *Phys. Chem. Chem. Phys.*, 2012, **14**, 7578-7590.
- 3. P. J. Bygrave, N. L. Allan and F. R. Manby, *J. Chem. Phys.*, 2012, **137**, 164102.
- 4. M. Stein and J. Sauer, *Chem. Phys. Lett.*, 1997, **267**, 111-115.
- 5. O. Robach, G. Renaud and A. Barbier, *Surf. Sci.*, 1998, **401**, 227-235.
- 6. S. Tosoni and J. Sauer, *Phys. Chem. Chem. Phys.*, 2010, **12**, 14330-14340.
- 7. R. M. Hazen, *Am. Minaral.*, 1976, **61**, 266-271.
- 8. A. D. Boese and J. Sauer, J. Comput. Chem., 2016, **37**, 2374-2385.
- 9. A. D. Boese and J. Sauer, *Phys. Chem. Chem. Phys.*, 2013, **15**, 16481-16493.
- 10. C. J. Cramer, in *Essentials of Computational Chemistry: Theories and Models*, John Wiley & Sons, 2nd Edition edn., 2004, pp. 527-528.

Structure files and energies contributions to the *hybrid MP2:(PBE+D2)ΔCC* values – high loading (1ML) systems

VASP POSCAR files are structured as follow:

- TITLE
- Cell scaling factor
- Lattice vector parameters
- Number of each atomic species
- Coordinates (Direct (fractional))

The energy contributions to the *hybrid MP2:(PBE+D2)*△*CC* energies are organized as follow:

- "pbc" stands for periodic boundary conditions
- "C1" is the CH₄/Mg₉O₉ cluster for the CH₄/MgO(001) system (see section 2.4)
- "C2" is the $C_2H_6/Mg_{16}O_{16}$ cluster for the $C_2H_6/MgO(001)$ system (see section 2.4)
- "MBE" stands for two-body expansion of the lateral interactions (see section 2.5)
- All the PBE+D2/TURBOMOLE calculations are performed with Ahlrichs'def2-TZVP basis set (see section 3)
- D- and T-zeta basis sets are aug'-cc-p(C)VDZ and aug'-cc-p(C)VTZ, respectively (see section 3)
- CBS(D,T) stands for basis set extrapolation between D- and T-zeta basis set

Gas phase CH₄ molecule

```
E(PBE+D2,VASP) = -24.065049 eV
E(PBE+D2,TURBOMOLE) = -1101.076767 eV
E(MP2/CBS(D,T)) = -1100.206992 eV
```

E(MP2/D-zeta) = -1098.461165 eV *E*(CCSD(T)/CBS(D,T)) = -1100.916797 eV *E*(CCSD(T)/D-zeta) = -1099.224376 eV

Gas phase C₂H₆ molecule

```
C2H6
1.00000000000000
н с
6 2
Direct
0.1922252011235486 0.2442428933326397 0.7830690062404457
0.2482859323211315 0.1928691877752229 0.8375062423104751
0.2019556830707145 0.3010342199940368 0.8451097228732678
0.3139318001221056 0.3621454857917215 0.7780192873070675
0.3700117051828116 0.3107106809480200 0.8324089592032138
0.3602480358759408 0.2539701161073538 0.7703535868197733
0.2371223231603352 0.2568291477800955 0.8170388934861492
0.3250973191434170 0.2981496016042371 0.7984467017596089
```

Energies:

E(PBE+D2,VASP) = -40.579336 eV E(PBE+D2,TURBOMOLE) = -2169.659787 eV E(MP2/CBS(D,T))= -2167.854084 eV E(MP2/D-zeta)= -2164.694968 eV E(CCSD(T)/CBS(D,T))= -2169.054210 eV E(CCSD(T)/D-zeta) = -2165.966630 eV

Unloaded MgO(001) surface

```
unloaded MgO(001)
1.00000000000000
0.00000000000000 8.477491999999998 0.0000000000000000
Ma O
32 32
Direct
0.366362999999998 0.046002999999989 0.4201219999999992
0.866362999999998 0.046002999999989 0.4201219999999992
0.616362999999998 0.296002999999989 0.4201219999999992
0.3663629999999998 0.546002999999989 0.4201219999999992
0.616362999999998 0.796002999999989 0.4201219999999992
0.866362999999998 0.546002999999989 0.4201219999999992
0.116362999999998 0.296002999999989 0.4201219999999992
0.116362999999998 0.796002999999989 0.4201219999999992
0.116362999999998 0.046002999999989 0.5048969999999997
```

0 6162620000000000	0 01600200000000000	0 501006000000000
0.010302999999999999	0.04000299999999999	0.50409099999999999
0.616362999999999998	0.546002999999999989	0.50489699999999999
0.36636299999999998	0.79600299999999989	0.50489699999999997
0.8663629999999998	0.7960029999999989	0.50489699999999997
0.3663629999999998	0.2960029999999989	0.5048969999999997
0 86636299999999998	0 29600299999999989	0 50489699999999997
0 116362000000000	0 5460020000000000000000000000000000000000	0 50/806000000007
0.110302999999999999	0.34000233333333333	0.504898999999999999
0.3663659510484152	0.0459975403185169	0.5899580909853981
0.8663659633678762	0.0459975175689280	0.5899580848457688
0.6163622071361559	0.2960054518173436	0.5899580877821009
0.3663659492532929	0.5459974846344480	0.5899580920403054
0.6163622275744132	0.7960054468983913	0.5899580842878152
0 8663659701941597	0 5459974989934793	0 5899580930180690
0 1162622212065094	0 2060054512209902	0 5000500077510000
0.1103022312903984	0.2900054515598802	0.5899580877510999
0.1163622171833580	0./960054388618616	0.5899580932023198
0.1163660101272299	0.0460017004393904	0.6738352893070925
0.6163660139252656	0.0460017024787760	0.6738352893070925
0.6163660110058586	0.5460017222966798	0.6738352893070925
0.3663696786759871	0.7960123383073139	0.6738303200953695
0.8663696736737307	0.7960123388572740	0.6738303111694322
0 3663696804731131	0 2960123434315562	0 6738303118490876
0.0000000000000000000000000000000000000	0.2000120400710510	0.0730303110490070
0.0003090/01031309	0.2960123492712512	0.6736303102934253
0.1163660041056431	0.546001/223850144	0.6/383528930/0925
0.6163629999999998	0.04600299999999989	0.4201219999999992
0.1163629999999998	0.0460029999999989	0.4201219999999992
0.1163629999999998	0.5460029999999989	0.4201219999999992
0.61636299999999998	0.5460029999999989	0.42012199999999992
0 36636299999999998	0 79600299999999989	0 42012199999999999
0 86636299999999999	0 796002999999999999	0 120121000000000
0.20030299999999999	0.790002999999999999	0.42012199999999999
0.36636299999999999	0.29600299999999999	0.4201219999999999
0.86636299999999998	0.29600299999999989	0.42012199999999992
0.8663629999999998	0.04600299999999989	0.50489699999999997
0.3663629999999998	0.0460029999999989	0.50489699999999997
0.1163629999999998	0.2960029999999989	0.5048969999999997
0.11636299999999998	0.7960029999999989	0.50489699999999997
0.3663629999999998	0.5460029999999989	0.50489699999999997
0 61636299999999998	0 296002999999999989	0 50489699999999999
0 616362000000000	0 796002999999999999	0 50/89699999999999
0.01030299999999999	0.790002999999999999	0.504898999999999999
0.866362999999999998	0.546002999999999989	0.50489699999999999
0.6163637081468707	0.0460102161691651	0.5896876461681728
0.1163637318506119	0.0460102390486412	0.5896876387477690
0.1163637138485569	0.5460102577884669	0.5896876457156424
0.6163637218090940	0.5460102809302683	0.5896876513459475
0.3663565122731924	0.7959998009621785	0.5896912117544986
0 8663564783329392	0 7959997905205682	0 5896912131679599
0.000000047000029092	0.7959997905205082	0.5090912151079599
0.3663564764138485	0.2959997666710095	0.5896912314425080
0.8663564860170183	0.2959997889477819	0.5896912126291554
0.8663596061392695	0.0460004672674401	0.6758380790135092
0.3663596183752205	0.0460004712590276	0.6758380550906864
0.1163560674335145	0.2959944909154331	0.6758416642110348
0.1163560522228693	0.7959944669542693	0.6758416338476891
0 3663596115173178	0 5460005052881911	0 6758380392032990
0 6163560217542220	0 20500//0101126/5	0 6758416505700425
0 6162500422220	0.2909944019113043	0 6760/1606/076000
0.0103500432237460	0./959944696589/16	0.0/084102542/6938
0.8663596170593735	0.5460005158378323	0.6758380458354338

E(PBE+D2,pbc) = -378.678314 eV

E(PBE+D2,C1) = -67408.013926 eV

E(PBE+D2,C2) = -119844.052399 eV E(MP2/CBS(D,T),C1) = -67401.328324 eV E(MP2/CBS(D,T),C2) = -119832.967052 eV E(MP2/D-zeta,C1) = -67334.995562 eV E(MP2/D-zeta,C2) = -119715.174899 eV E(CCSD(T)/D-zeta,C1) = -67337.513225 eV E(CCSD(T)/D-zeta,C2) = -119719.901028 eV

CH₄(1ML)/MgO(001) system

CH4-MgO(001)		
1.00000000000000		
8.4774919999999998	0.0000000000000000	0.0000000000000000000000000000000000000
0.0000000000000000000000000000000000000	8.4774919999999998	0.0000000000000000000000000000000000000
0.0000000000000000000000000000000000000	0.00000000000000000 2	5.00000000000000000
Мд О Н С		
32 32 16 4		
Direct		
0.3663629999999998	0.0460029999999989	0.4201219999999992
0.8663629999999998	0.0460029999999989	0.4201219999999992
0.6163629999999998	0.2960029999999989	0.42012199999999992
0.36636299999999998	0.54600299999999989	0.42012199999999992
0.6163629999999998	0.7960029999999989	0.42012199999999992
0.8663629999999998	0.5460029999999989	0.42012199999999992
0.1163629999999998	0.2960029999999989	0.4201219999999992
0.1163629999999998	0.7960029999999989	0.4201219999999992
0.11636299999999998	0.04600299999999989	0.50489699999999997
0.6163629999999998	0.0460029999999989	0.50489699999999997
0.6163629999999998	0.5460029999999989	0.50489699999999997
0.3663629999999998	0.7960029999999989	0.50489699999999997
0.86636299999999998	0.7960029999999989	0.50489699999999997
0.3663629999999998	0.2960029999999989	0.50489699999999997
0.8663629999999998	0.2960029999999989	0.50489699999999997
0.1163629999999998	0.5460029999999989	0.50489699999999997
0.3663751086619207	0.04600299999999989	0.5898961382435116
0.8663508913380790	0.04600299999999989	0.5898961382435116
0.6163629999999998	0.2960144951397354	0.5898959177539279
0.3663508913380789	0.5460029999999989	0.5898961382435116
0.6163629999999998	0.7959915048602625	0.5898959177539279
0.8663751086619206	0.5460029999999989	0.5898961382435116
0.11636299999999998	0.2959915048602624	0.5898959177539279
0.1163629999999998	0.7960144951397353	0.5898959177539279
0.1163629999999998	0.0460029999999989	0.6738352893070925
0.6163629999999998	0.0460029999999989	0.6738352893070925
0.6163629999999998	0.5460029999999989	0.6738352893070925
0.3663629999999998	0.7960029999999989	0.6734249998349018
0.8663629999999998	0.7960029999999989	0.6734249998349018
0.3663629999999998	0.2960029999999989	0.6734249998349018
0.8663629999999998	0.2960029999999989	0.6734249998349018
0.1163629999999998	0.5460029999999989	0.6738352893070925
0.6163629999999998	0.0460029999999989	0.4201219999999992
0.1163629999999998	0.0460029999999989	0.4201219999999992
0.1163629999999998	0.5460029999999989	0.42012199999999992

0.61636299999999998	0.5460029999999989	0.42012199999999992
0.3663629999999998	0.7960029999999989	0.4201219999999992
0.8663629999999998	0.7960029999999989	0.4201219999999992
0.36636299999999998	0.2960029999999989	0.42012199999999992
0.86636299999999998	0.2960029999999989	0.42012199999999992
0.86636299999999998	0.04600299999999989	0.50489699999999997
0.36636299999999998	0.04600299999999989	0.50489699999999997
0.11636299999999998	0.2960029999999989	0.50489699999999997
0.11636299999999998	0.7960029999999989	0.50489699999999997
0.36636299999999998	0.54600299999999989	0.50489699999999997
0.61636299999999998	0.2960029999999989	0.50489699999999997
0.61636299999999998	0.7960029999999989	0.50489699999999997
0.86636299999999998	0.54600299999999989	0.50489699999999997
0.6163629999999998	0.04600299999999989	0.5896175233336626
0.1163629999999998	0.04600299999999989	0.5896177661953483
0.1163629999999998	0.5460029999999989	0.5896175233336626
0.6163629999999998	0.5460029999999989	0.5896177661953483
0.3663629999999998	0.7960029999999989	0.5895871077766037
0.8663629999999998	0.7960029999999989	0.5895871077766037
0.3663629999999998	0.2960029999999989	0.5895871077766037
0.8663629999999998	0.29600299999999989	0.5895871077766037
0.8663013740648351	0.04600299999999989	0.6756673642700912
0.3664246259351643	0.04600299999999989	0.6756673642700912
0.11636299999999998	0.2959459646746232	0.6756733246488040
0.11636299999999998	0.7960600353253745	0.6756733246488040
0.3663013740648352	0.5460029999999989	0.6756673642700912
0.61636299999999998	0.2960600353253746	0.6756733246488040
0.61636299999999998	0.7959459646746233	0.6756733246488040
0.8664246259351644	0.5460029999999989	0.6756673642700912
0.61636299999999998	0.6527604377023751	0.7734557544335958
0.7225204655329160	0.5460029999999989	0.8236821810718624
0.6163629999999998	0.4392455622976225	0.7734557544335958
0.5102055344670835	0.5460029999999989	0.8236821810718624
0.11636299999999998	0.1527604377023753	0.7734557544335958
0.2225204655329162	0.0460029999999989	0.8236821810718624
0.11636299999999998	0.9392455622976226	0.7734557544335958
0.0102055344670834	0.0460029999999989	0.8236821810718624
0.1163629999999998	0.6521605135377087	0.8236821611569229
0.2231202182089890	0.5460029999999989	0.7734556616459881
0.11636299999999998	0.4398454864622892	0.8236821611569229
0.0096057817910106	0.5460029999999989	0.7734556616459881
0.6163629999999998	0.1521605135377087	0.8236821611569229
0.7231202182089888	0.0460029999999989	0.7734556616459881
0.6163629999999998	0.9398454864622892	0.8236821611569229
0.5096057817910107	0.0460029999999989	0.7734556616459881
0.6163629999999998	0.5460029999999989	0.7985272893070885
0.1163629999999998	0.0460029999999989	0.7985272893070885
0.1163629999999998	0.5460029999999989	0.7985272893070885
0.6163629999999998	0.0460029999999989	0.7985272893070885

E(PBE+D2,pbc) = -475.549059 eV E(PBE+D2,C1) = -68509.229406 eV E(PBE+D2,MBE) = -4404.512460 eV E(MP2/CBS(D,T),C1) = -68501.670644 eV E(MP2/D-zeta,C1) = -68433.552205 eV *E*(MP2/CBS(D,T),MBE) = -4400.951030 eV *E*(CCSD(T)/D-zeta,C1) = -68436.856529 eV *E*(CCSD(T)/CBS(D,T),MBE) = -4403805103 eV

C₂H₆(1ML)/MgO(001) system

20116 14 0 (0.01)		
C2H6-MgO(UU1)		
1.0000000000000		
8.4//49199999999998	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000
0.0000000000000000000000000000000000000	8.4//4919999999999	
0.0000000000000000000000000000000000000	0.00000000000000000000000000002	5.0000000000000000000000000000000000000
Mg O H C		
32 32 24 8		
Direct	0.0460000000000000000000000000000000000	
0.3663629999999999	0.046002999999999989	0.4201219999999992
0.8663629999999999	0.046002999999999989	0.4201219999999992
0.6163629999999999	0.296002999999999989	0.4201219999999999
0.36636299999999998	0.546002999999999989	0.4201219999999999
0.6163629999999999	0.796002999999999989	0.4201219999999992
0.8663629999999999	0.546002999999999989	0.4201219999999992
0.1163629999999999	0.296002999999999989	0.4201219999999992
0.1163629999999999	0.796002999999999989	0.4201219999999999
0.1163629999999999	0.046002999999999989	0.5048969999999999
0.6163629999999999	0.046002999999999989	0.5048969999999999
0.6163629999999999	0.546002999999999989	0.5048969999999999
0.3663629999999999	0.796002999999999989	0.5048969999999999
0.8663629999999999	0.796002999999999989	0.5048969999999999
0.3663629999999999	0.296002999999999989	0.5048969999999999
0.8663629999999999	0.296002999999999989	0.5048969999999999
0.1163629999999999	0.546002999999999989	0.5048969999999999
0.3664/18262928364	0.0460370536005851	0.589//3125/130496
0.86622/1062//0385	0.0459938827263927	0.5899238837618028
0.61656198/5439040	0.2960078305019897	0.5899261852079100
0.3664/1864010151/	0.5460370649362495	0.589//30995258618
0.6165620361924737	0.7960078330774581	0.5899261977546409
0.8662270801896886	0.5459938212147299	0.5899238781883112
0.1163310280811397	0.2960384302989141	0.5897644594649384
0.11633109/1393383	0./960384440014689	0.5897644566856188
0.1165396814977162	0.046021/926290389	0.6732856919472464
0.6160775672075055	0.0461124936963000	0.6738352893000013
0.6160//56/32/5855	0.5461125037791933	0.6738352893000013
0.3663018051669541	0.7960630568939899	0.6733072695810063
0.2662015502520293049	0.2060620714226652	0.6738352893000013
0.3663013508559321	0.2960630714326633	0.0730072003049403
0.8668148650037939	0.2961121453811326	0.6738352893000013
0.11636395366318936	0.5460218754446423	0.0/32855/5520/88/
0.61636299999999999	0.0460029999999999989	0.4201219999999999
0.11636299999999999	0.0460029999999999989	0.42012199999999992
0.11636299999999999	0.54600299999999999	0.42012199999999999
0.81636299999999999	0.5460029999999999989	0.42012199999999992
0.36636299999999999	0.796002999999999999	0.42012199999999999
0.2663620000000000	0.206002333333333333	0 1201210000000000
0.500502999999999999	0.2060020000000000000000000000000000000	0 420121000000000
0 866363000000000	0.0160029999999999999	0 50489699999999999
0.000000202999999999999	0.040002333333333333	0.50409099999999999
0.0000000000000000000000	しょしすしししん ノフフフフランプロフ	

0.1163629999999998	0.2960029999999989	0.5048969999999997
0.1163629999999998	0.7960029999999989	0.5048969999999997
0.3663629999999998	0.5460029999999989	0.5048969999999997
0.6163629999999998	0.2960029999999989	0.50489699999999997
0.6163629999999998	0.7960029999999989	0.50489699999999997
0.8663629999999998	0.5460029999999989	0.50489699999999997
0.6163387981382441	0.0460067950776859	0.5896491441673785
0.1163511248272928	0.0460463283581496	0.5894715734026926
0.1163510859881647	0.5460463329914603	0.5894715417268138
0.6163388357457331	0.5460067897946644	0.5896491285603794
0.3664397650335604	0.7960467584015544	0.5894822180235461
0.8664307556792560	0.7959827838077312	0.5896500351813645
0 3664397192156977	0 2960467033886971	0 5894822238455711
0 8664307138738129	0 2959827614259298	0 5896500111582402
0 8667266755539269	0.0459362203627995	0 6756545062825948
0 3658252525538207	0.0461106591577337	0 6755057615203411
0 11600321/08080/1	0 2961017077710902	0.6754523337608473
0 1160033017317355	0.7961015619319367	0 6754523236824691
0.2660262744707612	0. 5461106505206404	0.0754023230024091
0.5050252744707512	0.0401100090200404	0.6756512006744170
0.6161094154391392	0.2959331794313210	0.6756518006744179
0.6161094891167865	0.7959331557537400	0.6756518078041751
0.866/266310403513	0.5459359163996769	0.6/5654515/1611/3
0.63/84123499/9925	0.9469670611760737	0.7/19/8306/935938
0.554/0/9041368869	0.1402/34249253932	0.7782363024612176
0.654/98144582602/	0.0522534863152692	0.832/9433/3/95//3
0.4394026771190759	0.8397487523896866	0.8373894299026264
0.3575308902431323	0.0313638695458079	0.8461849513040143
0.3398515944266794	0.9350151955776500	0.7837101524431468
0.9342694219130803	0.8896611272507032	0.7785527762674078
0.8506740498925351	0.6965239474629419	0.7727378132281796
0.8364787774949346	0.8018660732019591	0.8336494112653725
0.1345980484980821	0.7809798981676740	0.8453387060689729
0.0518409178439470	0.5894505935092894	0.8373744047943696
0.1488703922779512	0.6836329861583276	0.7829524147179558
0.3398208423103722	0.4350480838892805	0.7837030982870251
0.4393415431372280	0.3397481518138694	0.8373826768195521
0.3575085438668312	0.5313794616697194	0.8461810102141401
0.5547211907296692	0.6402615399437175	0.7782388639364195
0.6547835250580347	0.5522111111974090	0.8327978910916325
0.6378164211908982	0.4469386381058922	0.7719786202051090
0.8506715679902686	0.1965266251124481	0.7727448353757451
0.8365112702556973	0.3018581137956038	0.8336589987810623
0.9342898377447646	0.3896516819208038	0.7785599050010523
0.0518496900952318	0.0894194455751382	0.8373712560078050
0.1488699861697189	0.1835979596432639	0.7829468031571796
0.1346316345304649	0.2809384243440485	0.8453348891606530
0.5748210486670793	0.0276857988282408	0.7991755338999980
0.4197856644958633	0.9542399020400656	0.8177790638999980
0.9149262219208851	0.7771749686127580	0.7996230446999988
0.0706907270111301	0.7035890791597301	0.8174439810999985
0.4197559133358284	0.4542500051035112	0.8177746174999996
0.5748037356097196	0.5276643781233409	0.7991762611000013
0.9149391670234384	0.2771657113318434	0.7996289622999981
0.0707059378517203	0.2035573108242176	0.8174418063000033

E(PBE+D2,pbc) = -541.984262 eV

E(PBE+D2,C2) =-122013.856343 eV

E(PBE+D2,MBE) = -8679.168470 eV

E(MP2/CBS(D,T),C2) = -122000.981899 eV E(MP2/D-zeta,C2) = -121879.985002 eV E(MP2/CBS(D,T),MBE) = -8671.747361 eV E(CCSD(T)/D-zeta,C2) = -121886.007482 eV E(CCSD(T)/CBS(D,T),MBE) = -8676.582964 eV