Intermolecular and Very Strong Intramolecular C–Se…O/N Chalcogen Bonds in Nitrophenyl Selenocyanate Crystals

Hui Wang,*a Ju Liua and Weizhou Wang*b

^a Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, College of Chemistry & Material Science, Shanxi Normal University, Linfen, 041004, People's Republic of China E-mail: wanghui@sxnu.edu.cn

^b College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, People's Republic of China E-mail: wzw@lynu.edu.cn

Fig. S1 (a) The crystal cell unit of crystal **1a**, (b) The 3D supramolecular structure of crystal **1a** constructed by C–Se…N, C–Se…O chalcogen bonds, C–H…O hydrogen bond as well as π –hole... π –hole bonds.

Fig. S2 (a) The crystal cell unit of crystal **1b**, (b) The torsion angle between -CN/plane of $-NO_2$ and the plane of phenyl ring, (c) The 3D supramolecular structure of crystal **1b** constructed by C-Se…N, C-Se…O chalcogen bonds, C-H…O hydrogen bond as well as π -hole… π -hole bonds (distance in Å).

Fig. S3 (a) The crystal cell unit of crystal **2**, (b) The bifurcated chalcogen bonds formed by Se atom of one *p*–NSC molecule with the N and O atoms from other adjacent two molecules (distance in Å), (c) The 3D supramolecular structure of crystal **2** constructed by C–Se…N, C–Se…O chalcogen bonds, C–H…O hydrogen bond as well as π –hole… π –hole bonds.

Crystals	Interactions	<i>d</i> /(Å)	<i>θ</i> /°
1a	C7–Se1 \cdots O2 (x, y, z)	2.5145(18) -26.5%	169.83(8)
	C6–Se1…N2 (-x, y–0.5, 0.5–z)	3.259(2) -5.5%	175.50(7)
	$\pi_h \cdots \pi_h (C1 \cdots C3, 1-x, 1-y, -z)$	3.447(3) -6.8%	
	$\pi_h \cdots \pi_h (C2 \cdots C4, 1-x, 1-y, -z)$	3.538(3) -4.4%	
	C2-H2···O1 (-x+1, y+0.5, -z-0.5)	2.541(3) -6.5%	135.4
	C3–H3···O2 (x, y+1, z)	2.671(3) -1.8%	126.9
1b	C7–Se1 \cdots O1 (x, y, z)	2.525(3) -25.5%	170.06(12)
	C1–Se1····N2 (–x–1, y–0.5,–z–2)	3.222(4) -6.6%	178.90(10)
	$\pi_h \cdots \pi_h (C1 \cdots C2, 1-x, 1-y, -z)$	3.588(4) -3.0%	
	$\pi_h \cdots \pi_h (C4 \cdots C5, 1-x, 1-y, -z)$	3.594(5) -2.9%	
	C4–H4…O2 (x+1, y+1, z)	2.698(5) -0.8%	126.3
2	C6–Se1…N2 (–x–1, y–0.5, –z–2)	3.333(5) -3.4%	173.34(12)
	C7–Se1 \cdots O1 (x+1, y–1, z)	3.289(4) -3.8%	166.79(14)
	$\pi_h {}^{\cdots} \pi_h \left(C2 {}^{\cdots} C3, x{+}1, y, z \right)$	3.550(5) -4.0%	
	$\pi_h {}^{\cdots} \pi_h \left(C5 {}^{\cdots} C6, x{-}1, y, z \right)$	3.556(5) -3.9%	
	C1–H1···O1 (x+1, y–1, z)	2.564(5) -5.7%	152.4
	C2–H2···O2 (–x–1, y–0.5, –z–1)	2.575(5) -5.3%	128.6

Table S1. The main bonding properties and geometrical parameters of crystals.

The percentages represent the shortening degree of bonding length comparing to the sum of vdW radii of interacting atoms.

Table S2. The chalcogen bond interactions, second–order perturbation stabilization energies E^2 (in kJ·mol⁻¹) and the amount of charge transfer Δq (in *a.u.*) of the selected units in crystal by NBO analysis.

Crystals	Bonds	Donor	Acceptor	E^2	E^2_{total}	Δq
1a	C−Se…N	LP(1)N7	BD*(1)Se16-C17	6.28	6.28	0.0045
	C−Se…O	LP(1)O4	BD*(1)Se1–C3	15.31	62.34	
		LP(2)O4	BD*(1)Se1-C3	47.03		
		LP(1)O19	BD*(1)Se16-C18	14.48	50.59	
		LP(2)O19	BD*(1)Se16-C18	36.11		
1b	C−Se…N	LP(1)N16	BD*(1)Se17–C21	5.65	6.53	0.0041
		BD(2)C15-N16	BD*(1)Se17-C21	0.88		
	C−Se…O	LP(1)O2	BD*(1)Se3-C15	14.81	58.87	
		LP(2)O2	BD*(1)Se3-C15	44.06		
		LP(1)O18	BD*(1)Se17-C19	16.02	60.45	
		LP(2)O18	BD*(1)Se17-C19	44.43		
2	C–Se…N	LP(1)N17	BD*(1)Se1–C2	3.05	3.05	0.0031
	C−Se…O	LP(1)O17	BD*(1)Se1–C3	2.43	3.39	0.0018
		LP(2)O17	BD*(1)Se1-C3	0.96		

"LP" for 1-center valence lone pair, "BD" for 2-center bonding and "BD*" for 2-center antibonding.