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1 Theory

1.1 Data Treatment

The total structure factor F(Q), where Q is the neutron momentum transfer, can be obtained from
neutron scattering experiments once corrections have been made for various factors, including but not
limited to: background subtraction, multiple scattering, and attenuation.1 Particular attention needs
to be paid to the correction for inelasticity, especially for samples rich in hydrogen. The self-scattering
background and e�ects of inelasticity can be removed from the total di�erential scattering cross section
using an iterative method developed by Soper.2

For a system, di�erent but complementary structure factors can be determined for each unique
isotopically substituted variant measured. This is especially true for isotopes with large di�erences in
neutron scattering lengths, such as in the case of hydrogen substitution for deuterium bH = -3.74 fm
and bD = 6.67 fm).3

The total structure factor F(Q) for each sample is equal to the sum of each unique Faber�Ziman
partial structure factor Sαβ(Q), weighted by the composition and neutron scattering lengths (cα and
b̄α representing the atomic fraction and average neutron scattering length of atom α respectively). Q
is the momentum transfer for scattering, equal to 4π sin θ/λ, where θ is the angle between the incident
and scattered neutron wavevectors and λ the wavelength of the neutron.

Fi(Q) =
∑
α,β≥α

(2− δαβ)cαcβ b̄αb̄β(Sαβ(Q)− 1) (†1)

The terms concerning the sample composition and neutron scattering lengths can be collected as
a matrix of weights wij . The sum is again run over all the partial structure factors in the sample.

Fi(Q) =
∑
j=1,N

wij(Sj(Q)− 1) (†2)

The partial structure factor is related by a Fourier transformation to the partial radial distribution
function gαβ(r). This describes the density of β atoms, relative to their bulk density, as a function of
distance to α atoms. ρ0 is the atomic number density of the sample.

a Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
b Department of Chemistry, University College London, 20 Gower Street, London, WC1H 0AJ, UK
c ISIS Facility, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX, UK
d London Centre for Nanotechnology, University College London, Gower Street, London, WC1E 6BT, UK

1

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2018



Sαβ(Q)− 1 =
4πρ0
Q

∫ ∞
0

r[gαβ(r)− 1] sin(Qr) dr (†3)

gαβ(r) =
ραβ(r)

ρβ
(†4)

The partial radial distribution function is also related to the cumulative coordination number of β
atoms around α as a function of distance.

Nαβ(r) =

∫ r

0

ρβgαβ(r)4πr2 dr (†5)

1.2 Empirical Potential Structure Re�nement

Empirical Potential Structure Re�nement (EPSR) is a method of analysing neutron di�raction data
through the use of a Monte�Carlo simulation.4�6 In short, the simulation is re�ned against the
available scattering data, a�ording a full 3-dimensional statistical ensemble fully consistent with that
data. This box can then be interrogated directly to determine structural and orientational information.
Unlike standard RMC methods, which seek to minimise a χ2 parameter measuring the `goodness of
�t', EPSR aims to minimise the energy of the simulation, as de�ned by a reference and empirical
potential. This has the bene�t of helping the simulation avoid getting trapped in local minima on the
potential energy surface.

Uαβ(r) = URefαβ (r) + UEmpαβ (r) (†6)

The reference potential has a standard form, with the intermolecular part of the potential de-
termined by a Lennard�Jones and a pseudo-Coulombic term (the `seed' parameters), while the in-
tramolecular part is based on harmonic potentials. Through the seed parameters, known information
about the system (bond lengths, angles, charges etc.) is included in the simulation, allowing the
inclusion of physical parameters into the re�nement.

URefαβ (r) = 4εαβ

[(σαβ
rij

)12
−
(σαβ
rij

)6]
+

qαqβ
4πε0rij

(†7)

Once the simulation with only the reference potential has equilibrated, the empirical potential is
switched on. This potential has a non-standard form, its magnitude varying depending on how poorly
the reference potential �ts the data at a certain value of Q.6 It is used to perturb the simulation box
such that the calculated structure factors more closely resemble the actual di�raction data.

The form of the empirical potential is shown in Equations †8 and †9. ρ is the atomic number
density and σr a width function, both constant. The potential overall is a series of Poisson functions.6

UEP (r) = kT
∑
i

Cipni(r, σr) (†8)

pn(r, σ) =
1

4πρσ3(n+ 2)!

(
r

σ

)n
exp

[
− r

σ

]
(†9)

For every r value that falls within the range of the empirical potential (each ri, normally spaced
by 0.1 Å), a function following that in Equation †9 is generated, using Equation †10.

ni =
ri
σr
− 3 (†10)

The magnitude of the empirical potential at an ri is represented by the coe�cient Ci. The coe�-
cients are calculated by �tting a series of the Fourier-transformed pn(r, σ), shown in Equation †11, to
the di�erence between the data and the simulation in Q space.
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Pn(Q, σ) = 4πρ

∫
pn(r) exp(iQr)dr =

1

(n+ 2)(
√

1 +Q2σ2)(n+4)

[
2 cos(nα) +

(1−Q2σ2)

Qσ
sin(nα)

]
(†11)

The coe�cients are re�ned over the course of the simulation to minimise the di�erence between the
simulation and the data (a detailed description of the re�nement process is located in Soper).6 Due to
errors introduced in the data treatment, as well as in the experimental procedure itself, the magnitude
of the empirical potential is capped to avoid unphysical structures being introduced to the simulation
box.
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Figure †1: Radial distribution functions from Fourier transformation of the experimental data (black)
and the EPSR �tted structure factor (red) for ammonia borane dissolved in THF.
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Figure †2: Radial distribution functions from Fourier transformation of the experimental data (black)
and the EPSR �tted structure factor (red) for ammonia borane dissolved in ammonia.
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Figure †3: Angular radial distribution function for AB-AB interactions for AB dissolved in ammonia,
where θ is the angle between the AB dipoles. The distance is that between an HN and HB, hence the
�rst peaks show the angles between the dipoles on dihydrogen bonding pairs.

Figure †4: Angular radial distribution function for AB-AB interactions for AB dissolved in THF, where
θ is the angle between the N-H bonds. The distance is that between an HN and HB.
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Figure †5: Angular radial distribution function for AB-AB interactions for AB dissolved in ammonia,
where θ is the angle between N-H bonds. The distance is that between an HN and HB, hence the �rst
peaks show the angles between N-Hs on dihydrogen bonding pairs.
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Figure †6: Partial radial distribution functions for HN· · ·HN interactions for the model of AB dissolved
in THF (black) and liquid ammonia (red). The �rst peaks are located at 4.2 Å, indicating that HN· · ·HN

dihydrogen bonds do not occur in these systems.
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Figure †7: Angular radial distribution function for AB-THF interactions, where θ is the angle between
the AB dipole and the axis running along the plane of the THF ring, perpendicular to the THF dipole.
The distance is that between HN and O1. This shows orientations with the THF oxygen pointing at
the HN rather than parallel to the AB dipole is more favourable.

Figure †8: Angular radial distribution function for AB-THF interactions, where θ is the angle between
an N-H bond and the THF dipole. The distance is that between HN and O1. This shows orientations
with the THF oxygen pointing at the HN rather than parallel to the AB dipole is more favourable.
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Figure †9: Angular radial distribution function for AB-THF interactions, where θ is the angle between
an N-H bond and the axis running along the plane of the THF ring, perpendicular to the THF dipole.
The distance is that between HN and O1. This shows orientations with the THF oxygen pointing at
the HN rather than parallel to the AB dipole is more favourable.

Figure †10: Angular radial distribution function for AB-ammonia interactions, where θ is the angle
between the AB dipole and an ammonia HA-NA bond. The distance is that between an HN and NA.
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Figure †11: Angular radial distribution functions for AB-ammonia interactions, where θ is the angle
between the AB dipole and an ammonia HA-NA bond. The distance is that between an HB and HA.

Figure †12: Angular radial distribution function for AB-ammonia interactions, where θ is the angle
between an AB N-H bond and the plane perpendicular to an ammonia HA-NA bond. The distance is
that between an HN and NA.
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Figure †13: Angular radial distribution function for AB-ammonia interactions, where θ is the angle
between an AB B-H bond and an ammonia HA-NA bond. The distance is that between an HB and
HA.
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Figure †14: Normalised probability distributions for the angle B-HB· · ·HB, in (top) AB dissolved in
THF and (bottom) AB dissolved in liquid ammonia. A maximum HB· · ·HB distance of 2.2 Å was set.
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