Supplementary Information

Table of Contents:

- (1) Computational details
- (2) CAS calculations of CO_3^{2-} and CO_3^{4-} .

(3) Table 2-SI. C-O bond length (in Å), frequencies and intensities of vibrational modes of CO₃ fragment, ionization potential (IP, in eV)) and corresponding charge transfer q(nH2O) of isolated vs. solvated (SMD approximation) di-anion CO_3^{2-} and corresponding clusters CO_3^{2-} ·nH₂O (n=3 and 6).

(4) Table 3-SI. C-O bond length (in Å), frequencies and intensities of vibrational modes of CO₃ fragment, ionization potential (IP, in eV)) and corresponding charge transfer q(nH2O) of isolated vs. solvated (SMD approximation) anion-radical CO₃^{•-} and corresponding clusters CO₃^{•-} \cdot nH₂O (n=3 and 6).

(5) Coordinates of optimized structure of $CO_3(H_2O)_n^{2-}$ level of theory: M062X/ 6-311+G(d,p)

- (5-1) CO₃²⁻ (5-11) CO₃(H₂O)₃²⁻
- (5-III) $CO_3(H_2O)_6^{2-}$

(6) Coordinates of optimized structure of $CO_3(H_2O)_n^{\bullet^-}$ level of theory: M062X/ 6-311+G(d,p)

- (6-I) CO₃•⁻
- (6-II) CO₃(H₂O)₃•⁻
- (6-III) CO₃(H₂O)₆•⁻

(1) Computational details:

DFT (B3LYP, PBE, PBE0, M06-2x and WB97x) and CCSD were done using Gaussian 09, Revision D.01 program.ⁱ We add D3 version of Grimme's dispersion with Becke-Johnson dampingⁱⁱ to each functional except WB97x that uses a similar damping function to that used by the Grimme's GD3 (ref)ⁱⁱⁱ model. Basis set 6-311+G(d,p) was use in all the calculations. M06-2X calculations were done with aug-cc-pVDZ basis set also.

(2) (18e/13o)/(17e/13o)/ aug-cc-pVDZ were included in the active space of the CASSCF^{iv} calculations of isolated carbonate $CO_3^{2^-}$ and its anion-radical CO_3^{--} (GAMESS^v program suite). Table 1-SI. C-O bond lengths (in Å) and vibrational frequencies v (cm⁻¹) of the anion-radical CO_3^{--} ($1^2A_2'$) and the di-anion $CO_3^{2^-}(1^1A_1')$ in the D_{3h} configuration $\Delta E = E(1^1A_1') - (1^2A_2')$ is the energetic gap between the di-anion and the anion-radical (in eV). CAS(18/13)/aug-cc-pVDZ ($CO_3^{2^-}$) and CAS(18/13)/aug-cc-pVDZ (CO_3^{--}).

	C-O, Å	v 1e'	a ₂ "	a ₁ ′	2e'	ΔE, eV
1 ¹ A ₁ '	1.316	663	897	998	1338	4.94
1 ¹ A ₂ '	1.279	i732	823	1080	1074	

(3) Table 2-SI. C-O bond length (in Å), frequencies and intensities of vibrational modes of CO₃ fragment, ionization potential (IP, in eV)) and corresponding charge transfer q(H2O)_n of isolated vs. hydrated (SMD approximation) di-anion CO_3^{2-} and corresponding clusters $CO_3 \cdot (H_2O)_n^{2-}$ (n=3 and 6).

Mode (cm ⁻¹)	1e'	1a ₂ "	1a ₁ '	2e'	R(C-O), Å	IP, eV	q(H ₂ O) _n
CO ₃ ²⁻	658/0.4	882/7.5	1049/0.0	1388/933	1.305	-3.30	-
CO ₃ ²⁻ - SMD					1.296	4.46	-
CO ₃ (H ₂ O) ₃ ²⁻ -	686/8.	908/54.	1072/0.0	1426/772	1.298	-1.25	-0.219
SMD					1.294	5.12	-0.170
CO ₃ (H ₂ O) ₆ ²⁻	682/2.7	937/68.	1081/0.0	1451/613	1.295	0.26	-0.248
SMD					1.293	5.6	-0.223

(4) Table 3-SI. C-O bond length (in Å), frequencies and intensities of vibrational modes of CO₃ fragment analogous to high symmetric d, ionization potential (IP, in eV)) and corresponding charge transfer $q(H2O)_n$ of isolated vs. hydrated (SMD approximation) dianion CO₃⁻⁻ and corresponding clusters CO₃(H₂O)_n⁻⁻ (n=3 and 6).

Mode (cm ⁻¹)	1e'	1a ₂ "	1a ₁ '	2e'	R(C-O), Å	q(H ₂ O) _n
CO ₃	i255	847/26.	1135/0.	1234/10.	1.269	-
SMD					1.267	-
CO ₃ (H ₂ O) ₃ -	i279	856/39.	1140/0.	1235/10.	1.268	-0.052
SMD					1.268	-0.045
CO ₃ (H ₂ O) ₆ -	i277	857/26.	1141/0.	1233/10.	1.268	-0.064
SMD					1.268	-0.059

(5) Coordinates of optimized structure of $CO_3(H_2O)_n^{2-}$ level of theory: M062X/ 6-311+G(d,p):

(5-I) n=0:

- C -0.000001 -0.000013 -0.000010
- O 1.189908 0.524502 0.000003
- O -1.049208 0.768186 0.000003
- O -0.140699 -1.292679 0.000003

(5-II) n=3:

- C -1.222377 0.008748 -0.010143
- 0 -1.197336 -1.161418 -0.561035
- 0 -1.204076 0.116204 1.278923
- O -1.183389 1.070909 -0.747352
- 0 1.263841 -0.726704 1.661335
- H 1.370768 -1.120941 0.784452
- H 0.288708 -0.472859 1.647705
- 0 1.287121 -1.080165 -1.437764
- 0 1.295237 1.782039 -0.194027
- H 1.395717 -0.124125 -1.338085
- H 0.319486 1.660035 -0.412663
- H 0.307780 -1.192072 -1.228738
- H 1.388601 1.216626 0.585347

(5-III) n=6

С	-0.000024	0.003050	-0.000680
0	-0.000498	-0.100080	1.285963
0	0.000878	1.168686	-0.554638
0	-0.000832	-1.059695	-0.733174
0	2.613574	1.740439	-0.024407
н	2.703696	1.101955	0.698170
н	1.642424	1.728222	-0.202451
0	2.609136	-0.851191	1.522729

- O 2.611572 -0.894770 -1.495636
- H 2.700878 -1.158869 0.609047
- H 1.640146 -1.040176 -1.394881
- H 1.638170 -0.688317 1.598547
- H 2.704120 0.050412 -1.306386
- H -1.641659 0.426494 1.686304
- O -2.612963 0.596930 1.636011
- H -2.704785 1.044359 0.782097
- H -1.640529 1.248459 -1.213068
- 0 -2.611377 1.116887 -1.335811
- H -2.700282 0.153296 -1.298466
- H -2.702257 -1.202084 0.513736
- 0 -2.609652 -1.718214 -0.300412
- H -1.638473 -1.673994 -0.473566

(6) Coordinates of optimized structure of $CO_3(H_2O)_n$ level of theory: M062X/ 6-311+G(d,p):

(6-I) n=0:

- C 0.072782 -0.000042 -0.000055
- O 1.306695 -0.000088 0.000016
- O -0.680545 1.043623 0.000013
- O -0.680736 -1.043503 0.000013

(6-II) n=3:

- C 1.391438 0.115013 0.009368
- 0 1.397940 -0.545586 1.112527
- 0 1.470170 -0.725788 -0.961034
- 0 1.287401 1.338553 -0.101269
- 0 -1.395832 -1.027041 -1.370100
- H -1.540821 -1.232083 -0.432703
- H -0.431377 -1.060570 -1.460107
- 0 -1.471617 -0.723949 1.496373

- O -1.543807 1.619340 -0.174418
 H -1.611980 0.192212 1.206367
 H -0.587438 1.788490 -0.142522
 H -0.509753 -0.785167 1.600699
- H -1.621304 0.922800 -0.844570

(6-III) n=6:

С	0.013264	-0.054149	0.000000
0	1.284509	0.140201	0.000000
0	-0.551066	-1.149665	0.000000
0	-0.564925	1.094258	0.000000
0	-0.857270	-1.445649	2.859403
Н	0.088771	-1.272362	2.986721
Н	-0.932419	-1.605777	1.907536
0	1.636325	0.008156	2.922734
0	-0.857270	1.417512	2.903756
Н	0.985217	0.717195	3.050285
Н	-0.898141	1.593510	1.954265
Н	1.835813	0.050464	1.978213
Н	-1.167381	0.500094	2.982098
Н	1.835813	0.050464	-1.978213
0	1.636325	0.008156	-2.922734
Н	0.088771	-1.272362	-2.986721
Н	0.985217	0.717195	-3.050285
0	-0.857270	1.417512	-2.903756
Н	-0.898141	1.593510	-1.954265
Н	-0.932419	-1.605777	-1.907536
0	-0.857270	-1.445649	-2.859403
н	-1.167381	0.500094	-2.982098

¹ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.

ⁱⁱ S. Grimme, S. Ehrlich and L. Goerigk, J. Comp. Chem. 32 (2011) 1456-65

ⁱⁱⁱ S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 132 (2010) 154104.

^{iv} B. O. Roos, Adv. Chem. Phys., 1987, 69, 399-446

^v a) M.W.Schmidt, K.K.Baldridge, J.A.Boatz, S.T.Elbert, M.S.Gordon, J.H.Jensen, S.Koseki, N.Matsunaga, K.A.Nguyen, S.J.Su, T.L.Windus, M.Dupuis, J.A.Montgomery, *J.Comput.Chem.*,1993, 14, 1347-1363; b) M.S.Gordon, M.W.Schmidt, Chapter 41, pp 1167-1189, in "Theory and Applications of Computational Chemistry, the first forty years" C.E.Dykstra, G.Frenking, K.S.Kim, G.E.Scuseria, Eds, Elsevier, Amsterdam, 2005; c) http://www.msg.chem.iastate.edu/GAMESS/GAMESS.html