Phenothiazine-Based Small-Molecule Organic Solar Cells with Power Conversion Efficiency Over 7% and Open Circuit Voltage of About 1.0 V Using Solvent Vapor Annealing

Yogajivan Rout,^a Rajneesh Misra^{*a} Rahul Singhal^b Subhayan Biswas and Ganesh D. Sharma^{*c}

^aDepartment of Chemistry Indian Institute of Technology, Indore (MP) 452020, India ^bDepartment of Physics, Malaviya National Institute of Technology (MNIT), Jaipur, Rajasthan, India

^cDepartment of Physics, The LNM Institute of Information Technology (Deemed University), Jamdoli, Jaipur (Raj.), 302031, India

Table of Contents	Page No.
Electrochemical Data	S2
DFT Calculation data	S2-S14

Figure S1. Cyclic voltammograms of phenothiazine 1 and 2 in 0.1 M solution of Bu_4NPF_6 in dichloromethane at 25 °C.

Figure S2. The molecular orbitals of phenothiazine 1 and 2 estimated from DFT calculation.

TD-DFT Calculation data

Phenothiazines 1 and 2

Calculation method: B3LYP/6-31G (d, p) level

Excitation energies and oscillator strengths:

Phenothiazine 1

Excitation energies and oscillator strengths: Excited State 1: Singlet-A 1.6422 eV 755.00 nm f=0.0943 <S**2>=0.000 234 -> 237 0.10204 236 -> 237 0.69833 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -3130.51875155Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: Singlet-A 2.0188 eV 614.16 nm f=0.1172 <S**2>=0.000 234 -> 237 0.27330 235 -> 237 0.63517 0.11284 235 -> 238 Excited State 3: Singlet-A 2.0909 eV 592.98 nm f=0.0786 <S**2>=0.000 234 -> 237 0.62963 235 -> 237 -0.26197 236 -> 237 -0.10754 236 -> 238 -0.10739Excited State 4: Singlet-A 2.1409 eV 579.13 nm f=0.1507 <S**2>=0.000 234 -> 238 0.10107 235 -> 238 -0.10121 0.68102 236 -> 238 Singlet-A Excited State 5: 2.5461 eV 486.96 nm f=0.25 60 <S**2>=0.000 234 -> 238 -0.29003 235 -> 238 0.61549 236 -> 238 0.13818

Excited Stat <s**2>=0.000</s**2>	ce 6:	Singlet-A	2.6256 e	V 472.21 nm	f=0.4432
234 -> 2	238	0.61820			
235 -> 2	237	-0.11964			
235 -> 2	238	0.29885			
Excited Stat	te 7:	Singlet-A	2.8325 e	V 437.72 nm	f=0.0273
<pre> <5^^22=0.000</pre>	727	0 10532			
232 -> 2	237	0.19552			
233 / 2	207	0.00970			
Excited Stat <s**2>=0.000</s**2>	te 8:	Singlet-A	3.0746 e	V 403.25 nm	f=1.1589
232 -> 2	237	0.43668			
233 -> 2	237	-0.14497			
236 -> 2	239	0.51820			
Excited Stat	ce 9:	Singlet-A	3.1643 e	V 391.82 nm	f=0.3501
<s**2>=0.000</s**2>	227	0 40007			
232 -> 2	237	0.48937			
$232 \rightarrow 2$	238	-0.11128			
233 -> 2	237	-0.12755			
230 -7 2	239	-0.43313			
Excited Stat	te 10:	Singlet-A	3.3544 e	V 369.62 nm	f=0.0204
<s**2>=0.000</s**2>					
232 -> 2	238	0.18303			
233 -> 2	238	0.67099			
Excited Stat	te 11:	Singlet-A	3.4178 e	V 362.76 nm	f=0.0395
<s**2>=0.000</s**2>					
226 -> 2	237	-0.19199			
229 -> 2	237	0.66499			
Excited Stat	te 12:	Singlet-A	3.5259 e	ev 351.64 nm	f=0.0023
<5**2>=0.000	727	0 27401			
221 -> 2	237	-0.27491			
220 -> 2	237	0.02027			
231 -7 2	237	-0.11316			
Excited Stat	te 13:	Singlet-A	3.5568 e	V 348.59 nm	f=0.0059
228 -> 1	727	0 1100/			
220 -> 2	237	-0 12825			
231 -> 2	237	0.62039			
232 -> 2	238	0.20788			
Excited Stat	te 14:	Singlet-A	3.5801 e	V 346.31 nm	f=0.0101
<s**2>=0.000</s**2>	-				· · · ·
230 -> 2	237	0.64051			
232 -> 2	238	0.20508			
234 -> 2	239	0.14129			

Excited State 15: Singlet-A 3.5851 eV 345.84 nm f=0.0448 <S**2>=0.000 230 -> 237 -0.26293 231 -> 237 -0.27834

 232
 ->
 238
 0.39246

 234
 ->
 239
 0.31846

 235
 ->
 239
 -0.17856

Excited State 16: Singlet-A 3.6078 eV 343.66 nm f=0.0113 <S**2>=0.000 226 -> 237 0.63843 229 -> 237 0.21011 229 -> 238 -0.14096 Excited State 17: Singlet-A 3.6848 eV 336.48 nm f=0.1112 <S**2>=0.000 0.10436 224 -> 237 231 -> 237 0.11116 -0.38499 232 -> 238 0.12243 233 -> 238 233 -> 2380.12243234 -> 2390.39363235 -> 239-0.28018236 -> 2400.12134 Excited State 18: Singlet-A 3.7485 eV 330.76 nm f=0.0896 <S**2>=0.000 0.12388 220 -> 237 221 -> 237 0.12783 -0.18681 234 -> 239 234 -> 240 0.17583 235 -> 239 235 -> 2390.12481236 -> 2400.55320236 -> 241-0.17274 0.12481 Excited State 19: Singlet-A 3.7631 eV 329.47 nm f=0.0131 <S**2>=0.000 -0.10797 220 -> 237 221 -> 237 0.60594 228 -> 237 0.27829 236 -> 240 -0.11855 Excited State 20: Singlet-A 3.8088 eV 325.52 nm f=0.0047 <S**2>=0.000 220 -> 237 -0.15501 234 -> 239 0.35522 235 -> 239 0.56902 SavETr: write IOETrn= 770 NScale= 10 NData= 16 NLR=1 NState= 20 LETran= 370.

Phenothiazine 2

Excitation energies and oscillator strengths: Excited State 1: Singlet-A 2.1586 eV 574.38 nm f=1.1792 <S**2>=0.000 253 -> 257 -0.10658 255 -> 257 0.68315 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -3359.86521827Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: Singlet-A 2.5415 eV 487.85 nm f=0.1726 <S**2>=0.000 252 -> 257 -0.10661 254 -> 257 -0.46141 254 -> 258 0.13073 256 -> 257 0.47877 Excited State 3: Singlet-A 3.0381 eV 408.10 nm f=0.3223 <S**2>=0.000 253 -> 257 0.36204 254 -> 257 -0.11472 254 -> 258 0.26273 255 -> 258 0.31081 256 -> 257 -0.29448 256 -> 258 -0.22427 Excited State 4: Singlet-A 3.0824 eV 402.24 nm f=0.0984 <S**2>=0.000 252 -> 257 0.13260 253 -> 257 0.36973 254 -> 257 0.36047 255 -> 258 0.13379 256 -> 257 0.40508 Excited State Singlet-A 3.1733 eV 390.71 nm f=0.5182 5: <S**2>=0.000 253 -> 257 -0.30163 253 -> 258 -0.11642 254 -> 258 -0.14823 255 -> 258 0.57605 Singlet-A 3.2423 eV 382.40 nm f=0.4781 Excited State 6: <S**2>=0.000 252 -> 257 0.10607

253 - 254 - 254 - 256 - 256 - 256 -	> 257 > 257 > 258 > 257 > 257 > 258 > 259		-0.32001 0.27506 0.36376 0.10217 -0.31430 -0.15959					
Excited S <s**2>=0.0 240 - 251 - 251 - 252 - 252 - 254 - 256 -</s**2>	tate 00 > 257 > 257 > 258 > 257 > 258 > 258 > 258 > 259	7:	Singlet-A -0.12763 0.52614 -0.13416 0.20562 -0.11187 -0.11610 -0.22629	3.6440	eV	340.24	nm	f=0.3984
Excited S <s**2>=0.0 251 - 254 - 256 -</s**2>	tate 00 > 257 > 258 > 259	8:	Singlet-A 0.23971 0.19774 0.56146	3.6974	eV	335.33	nm	f=0.8672
Excited S <s**2>=0.0 238 - 241 - 247 -</s**2>	tate 00 > 257 > 257 > 257	9:	Singlet-A 0.56958 0.31566 0.15516	3.8967	eV	318.18	nm	f=0.0105
Excited S <s**2>=0.0 237 - 241 - 242 - 243 - 244 - 244 - 251 - 252 - 252 - 252 - 253 - 254 - 254 -</s**2>	tate 00 > 257 > 257 > 257 > 257 > 257 > 257 > 257 > 257 > 258 > 258 > 258 > 258 > 258 > 258	10:	Singlet-A 0.10884 -0.13184 0.14168 0.11540 0.17778 -0.11716 -0.15082 0.41903 -0.14917 0.12097 -0.21919 -0.10491 -0.21031	3.9593	eV	313.14	nm	f=0.0630
Excited S <s**2>=0.0 238 - 241 - 247 - 253 - 254 -</s**2>	tate 00 > 257 > 257 > 257 > 257 > 258 > 258	11:	Singlet-A 0.29944 -0.29005 -0.20843 0.31297 0.11948	4.0092	eV	309.25	nm	f=0.0765

256 -> 258	(0.29104			
Excited State <s**2>=0.000 238 -> 257 241 -> 257 247 -> 257 251 -> 258 253 -> 258 256 -> 258</s**2>	12: -((((((((Singlet-A .21446 .32376 .19926 .10905 .40176 .21098	4.0415 eV	7 306.78 nm	f=0.0430
Excited State <s**2>=0.000 252 -> 257 252 -> 258 253 -> 258 254 -> 258 254 -> 259 256 -> 258</s**2>	13:	Singlet-A 0.28561 0.13498 0.33357 0.22857 0.14976 0.37716	4.0858 eV	7 303.45 nm	f=0.0164
Excited State <s**2>=0.000 240 -> 258 251 -> 258 252 -> 257 252 -> 258 254 -> 259 254 -> 260 254 -> 261 254 -> 263 256 -> 260 256 -> 261 256 -> 263</s**2>	14: () () () () () () () () () ()	Singlet-A 0.11513 0.26308 0.21844 0.17870 0.28404 0.15463 0.19043 0.16984 0.10580 0.10095 0.12205 0.12205 0.11091 0.10460	4.2502 eV	7 291.71 nm	f=0.0082
Excited State <s**2>=0.000 240 -> 257 242 -> 257 248 -> 257 251 -> 257 251 -> 258 254 -> 259 254 -> 263</s**2>	15:	Singlet-A 0.14273 0.17589 0.19069 0.10305 0.36465 0.29910 0.11676	4.3345 eV	7 286.04 nm	f=0.2874
Excited State <s**2>=0.000 236 -> 257 237 -> 257 240 -> 257 241 -> 257</s**2>	16:	Singlet-A).13151).10199).22502).11698	4.4049 eV	7 281.47 nm	f=0.0459

242 248 251 253 254	-> 257 -> 257 -> 258 -> 258 -> 259	0. 0. -0. -0. -0.	34770 33260 20532 14290 15794								
Excited <s**2>=0. 254 256</s**2>	State .000 -> 265 -> 265	17: 0. 0.	Singl 21993 60938	et-A	4	.4101	eV	281.14	nm	f=0.	0274
256	-> 273	-0.	12490								
Excited <s**2>=0. 251</s**2>	State .000 -> 259	18:	Singl	et-A	4	.4967	eV	275.72	nm	f=0.	0497
254	-> 259	0.	15764								
254 254	-> 263	0.	38536 13519								
254	-> 268	-0.	12644								
256	-> 263	-0.	35271								
256 256	-> 266	-0.	14136								
250	/ 200	0.	10295								
Excited	State	19:	Singl	et-A	4	.5385	eV	273.18	nm	f=0.	1069
<s**2>=0.</s**2>	.000	0	11011								
255	-> 260	0.	37819								
255	-> 261	0.	42901								
255	-> 262	-0.	18206								
Excited <\$**2>=0.	State .000	20:	Singl	et-A	4	.5440	eV	272.85	nm	f=0.	1447
241	-> 257	-0.	10283								
248	-> 257	-0.	14191								
255	-> 202 -> 260	0.	39969								
255	-> 261	-0.	22396								
255	-> 262	0.	38212								
SavETr:	write	IOETrn=	770 1	NScale=	10	NData=	= 10	5 NLR=1	NSta	ate=	20
LLIIAN=	370.										

Theoretical calculation:

Calculation method: B3LYP/6-31G** for C, H, N, S with Gaussian 09.

1

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Ζ	
1	6	0	0.743780	-3.265752	-1.614756	
2	6	0	-0.478754	-2.776898	-1.111978	
3	6	0	-1.690141	-3.286560	-1.564680	
4	6	0	-1.731668	-4.331546	-2.506941	
5	6	0	-0.512730	-4.840679	-2.981127	
6	6	0	0.700206	-4.309346	-2.557902	
7	6	0	-4.004235	-5.023558	-1.992958	
8	6	0	-4.198578	-4.053974	-0.981848	
9	6	0	-5.200683	-4.204010	-0.036022	
10	1	0	-5.312764	-3.436098	0.720884	
11	6	0	-6.098862	-5.293011	-0.076858	
12	6	0	-5.891818	-6.263835	-1.077067	
13	6	0	-4.860880	-6.141365	-1.995798	
14	1	0	-0.473644	-1.982006	-0.374130	
15	1	0	-0.506476	-5.659989	-3.690212	
16	1	0	1.628720	-4.711167	-2.948591	
17	1	0	-6.508191	-7.152145	-1.116980	
18	1	0	-4.707342	-6.941712	-2.709312	
19	7	0	-2.978346	-4.860812	-2.931374	
20	16	0	-3.221927	-2.565005	-1.006658	
21	6	0	-3.065095	-5.534183	-4.235435	
22	1	0	-2.443896	-6.441791	-4.259984	
23	1	0	-4.098174	-5.860870	-4.359004	
24	6	0	-7.165351	-5.387865	0.922159	
25	6	0	-6.923668	-4.707571	2.245229	
26	6	0	-8.355221	-6.062222	0.764855	
27	6	0	-5.987700	-5.354486	3.158314	
28	6	0	-7.587016	-3.518673	2.469068	
29	6	0	-8.785313	-6.681693	-0.453356	
30	6	0	-9.286982	-6.199624	1.847208	
31	6	0	-5.774780	-6.750286	3.080109	
32	6	0	-5.245356	-4.648463	4.133101	
33	6	0	-8.392585	-2.908564	1.451687	
34	6	0	-7.555800	-2.790658	3.701552	
35	7	0	-9.177165	-7.200259	-1.419023	
36	7	0	-10.053615	-6.352352	2.709345	
37	6	0	-4.913274	-7.407726	3.937877	

Input orientation:

38	1	0	-6.327391	-7.338375	2.355947
39	1	0	-5.322375	-3.571237	4.203777
40	6	0	-4.368611	-5.294619	4.983484
41	7	0	-9.035721	-2.378357	0.639119
42	7	0	-7.564940	-2.166862	4.684529
43	6	0	-4.188445	-6.694847	4.918513
44	1	0	-4.806633	-8.483239	3.866572
45	1	0	-3.798444	-4.714323	5.698676
46	7	0	-3.316779	-7.348530	5.790082
47	6	0	-2.715314	-8.597651	5.435144
48	6	0	-3.000753	-6.794131	7.071759
49	6	0	-2.765061	-9.676248	6.328024
50	6	0	-2.049630	-8.743423	4,209946
51	6	0	-1.663964	-6.699422	7.480537
52	6	0	-4.021084	-6.368273	7,933646
53	1	0	-3 279080	-9 559577	7 276313
54	÷	0	-2 155435	-10 884824	5 996167
55	6	0	-1 455810	-9 960538	3 879879
56	1	0	-1 998970	-7 903030	3 525311
57	1	0	-0 876899	-7 031383	6 811570
58	÷	0	-1 354687	-6 183631	8 737794
59	6	0	-3 701306	-5 838665	9 182620
60	1	0	-5 056812	-6 453056	7 621675
61	1	0	-2 200387	-11 714941	6 694710
62	1 6	0	_1 502920	_11 034460	1 770902
63	1	0	-1.302920	-10 063107	2 928836
64	1	0	-0.941779	-6 112614	2.920030
65	1 6	0	-0.313034		9.045590
66	0	0	-2.309437	-5.747070	9.391373
00 67	1	0	-4.490000	-5.509555	9.042097
60	1	0	-1.033243	-11.9/0/09	4.515/15
00	L C	0	-2.124920	-5.540450	1 172420
09	6	0	1.900010	-2.721049	-1.1/2420
70	6	0	3.036168	-2.230483	-0.790998
71	6	0	4.267096	-1.098418	-0.343113
12	6	0	5.498859	-2.148135	-0.861432
/3	6	0	4.294171	-0.682549	0.634610
74	0	0	6.700238	-1.613982	-0.419247
/5	1	0	5.502804	-2.935832	-1.60/861
/6		0	3.35//64	-0.313342	1.040064
//	6	0	5.493581	-0.13/926	1.068962
/8	6	0	6./20512	-0.595/48	0.552537
/9	1	0	1.635772	-1.9849//	-0.822597
80	1	0	5.488597	0.652051	1.811606
81	7	0	7.942851	-0.046429	0.999590
82	6	0	9.034822	0.113341	0.098509
83	6	0	8.099845	0.350570	2.358969
84	6	0	10.333656	-0.246241	0.489518
85	6	0	8.828834	0.640324	-1.186067
86	6	0	8.713565	1.572736	2.673092
87	6	0	7.653542	-0.478009	3.400104
88	1	0	10.496952	-0.656842	1.480268
89	6	0	11.402812	-0.074862	-0.387533

90	6	0	9.901620	0.790965	-2.062397
91	1	0	7.828144	0.928996	-1.489934
92	1	0	9.056855	2.217707	1.871153
93	6	0	8.881218	1.951641	4.003523
94	6	0	7.809316	-0.082170	4.726989
95	1	0	7.187189	-1.428284	3.162321
96	1	0	12.402314	-0.357694	-0.070068
97	6	0	11.194281	0.439072	-1.668829
98	1	0	9.726127	1.200396	-3.053030
99	1	0	9.358009	2.900742	4.230702
100	6	0	8.426833	1.131029	5.037681
101	1	0	7.458592	-0.734228	5.521738
102	1	0	12.028719	0.565074	-2.351661
103	1	0	8.552860	1.432819	6.072790
104	6	0	-2.719306	-4.609245	-5.410845
105	1	0	-1.702914	-4.219061	-5.301585
106	1	0	-3.390717	-3.744017	-5.375271
107	6	0	-2.855846	-5.333232	-6.753695
108	1	0	-3.875091	-5.704027	-6.908872
109	1	0	-2.618759	-4.661079	-7.583111
110	1	0	-2.176713	-6.190979	-6.818575

E(HF) = -3130.5534345

2

Standard orientation:

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-2.514067	-2.801216	-0.788522
2	6	0	-1.416225	-2.594539	0.070840
3	6	0	-0.173800	-3.148667	-0.214914
4	6	0	0.035672	-3.896690	-1.388913
5	6	0	-1.049927	-4.071754	-2.261137
6	6	0	-2.303096	-3.550352	-1.961073
7	6	0	2.455216	-3.658659	-1.393330
8	6	0	2.502013	-2.873831	-0.217686
9	6	0	3.616488	-2.103520	0.078154
10	1	0	3.615340	-1.515088	0.989288
11	6	0	4.761888	-2.115396	-0.746299
12	6	0	4.703026	-2.882069	-1.925871
13	6	0	3.571977	-3.616407	-2.250043
14	1	0	-1.547803	-2.010073	0.974953
15	1	0	-0.919645	-4.623100	-3.184770
16	1	0	-3.129843	-3.710717	-2.644444
17	1	0	5.527389	-2.872909	-2.627282
18	1	0	3.551459	-4.145203	-3.195173
19	7	0	1.319434	-4.427451	-1.677766

20	16	0	1.163543	-2.980521	0.952456
21	6	0	1.430063	-5.597623	-2.560807
22	1	0	1.075557	-5.368887	-3.576812
23	1	0	2.491198	-5.833807	-2.647786
24	6	0	5.935150	-1.326948	-0.353051
25	6	0	5.703940	-0.082749	0.449329
26	6	0	7.234808	-1.648305	-0.689761
27	6	0	4.968885	0.983842	-0.226942
2.8	6	0	7.625824	-2.860439	-1.347022
29	6	0	8.329663	-0.767603	-0.399747
30	6	0	5 113121	1 191941	-1 618193
31	6	0	4 056445	1 826714	0 450638
32	0 7	0	7 9915/18	-3 835027	-1 868710
33	7	0	9 245396	-0 075268	-0 207407
27	6	0	J.24JJJU 1 127002	2 200750	-2 200012
24	0	0	4.43/90Z	2.200739	-2.200912
30	1	0	5.808561	0.5/68/0	-2.179906
30		0	3.84/800	1.651438	1.500452
3/	6	0	3.363963	2.828480	-0.205144
38	6	0	3.549020	3.051344	-1.587287
39	1	0	4.606356	2.352213	-3.340510
40	1	0	2.649796	3.432571	0.341948
41	7	0	2.863560	4.075337	-2.247739
42	6	0	2.555867	3.977134	-3.640599
43	6	0	2.452699	5.252536	-1.547051
44	6	0	2.841528	5.048318	-4.498036
45	6	0	1.945431	2.824002	-4.154257
46	6	0	1.139755	5.724663	-1.679130
47	6	0	3.362686	5.955017	-0.743989
48	1	0	3.312900	5.940018	-4.098390
49	6	0	2.518843	4.963820	-5.851150
50	6	0	1.640103	2.742598	-5.511741
51	1	0	1.711117	2.000717	-3.487327
52	1	0	0.437396	5.180741	-2.301991
53	6	0	0.745906	6.884873	-1.014805
54	6	0	2,955449	7,105483	-0.070976
55	1	Ũ	4 383331	5 597874	-0 653866
56	1	0	2 745419	5 799121	-6 506946
57	£	0	1 921679	3 811195	-6 365231
50	1	0	1 166328	1 845564	-5 800227
50	1	0	_0 272070	7 2/10/2	-3.033227 -1.102021
59		0	-0.273079	7.241043	-1.123331
6U C1	0	0	1.640063	7.577221	-0.204034
61	1	0	3.668080	7.642074	0.548165
62	1	0	1.6/6010	3./4/112	-7.420619
63	1	0	1.336237	8.477429	0.315362
64	6	0	-3./92392	-2.262618	-0.478179
65	6	0	-4.888086	-1.803868	-0.210939
66	6	0	-6.167493	-1.269167	0.101641
67	6	0	-7.281784	-1.518015	-0.725824
68	6	0	-6.362772	-0.473662	1.249472
69	6	0	-8.529484	-0.992004	-0.425093
70	1	0	-7.153053	-2.119701	-1.619715
71	1	0	-5.521917	-0.277724	1.906863

72	6	0	-7.612215	0.042951	1.559135
73	6	0	-8.719667	-0.203699	0.725678
74	1	0	-9.368741	-1.186013	-1.083524
75	1	0	-7.740890	0.640250	2.454801
76	7	0	-9.990948	0.327319	1.036683
77	6	0	-11.173502	-0.411953	0.744356
78	6	0	-10.107060	1.611369	1.643357
79	6	0	-12.279356	0.224151	0.160011
80	6	0	-11.252003	-1.780696	1.045207
81	6	0	-10.988147	1.809654	2.717267
82	6	0	-9.351666	2.695103	1.169485
83	1	0	-12.221733	1.281278	-0.076715
84	6	0	-13.440683	-0.496759	-0.110841
85	6	0	-12.411158	-2.497009	0.753998
86	1	0	-10.403241	-2.275135	1.505827
87	1	0	-11.571263	0.973713	3.088919
88	6	0	-11.112592	3.069927	3.298611
89	6	0	-9.469566	3.947369	1.769087
90	1	0	-8.676564	2.548899	0.332858
91	1	0	-14.288436	0.009747	-0.563078
92	6	0	-13.512942	-1.860631	0.178869
93	1	0	-12.456829	-3.555589	0.992939
94	1	0	-11.798738	3.207613	4.129248
95	6	0	-10.352184	4.144335	2.832988
96	1	0	-8.878209	4.776409	1.391188
97	1	0	-14.417013	-2.420458	-0.039473
98	1	0	-10.446702	5.123056	3.292955
99	6	0	0.715071	-6.836664	-2.003814
100	1	0	-0.349714	-6.629125	-1.860924
101	1	0	1.126296	-7.051913	-1.011140
102	6	0	0.888719	-8.047888	-2.925076
103	1	0	1.945746	-8.303599	-3.058349
104	1	0	0.385926	-8.926136	-2.510561
105	1	0	0.464119	-7.862077	-3.918199
106	6	0	6.162270	-0.013586	1.766643
107	6	0	6.262418	1.235050	2.491783
108	6	0	6.569077	-1.198786	2.492597
109	6	0	6.670351	1.287338	3.787206
110	1	0	6.065539	2.159713	1.963681
111	6	0	6.952114	-1.153885	3.795712
112	1	0	6.522214	-2.159844	1.993143
113	6	0	7.009014	0.092053	4.517504
114	1	0	6.772542	2.245513	4.285741
115	1	0	7.215413	-2.068413	4.316486
116	6	0	7.391752	0.141992	5.860528
117	6	0 0	7.438835	1.373235	6.575049
118	6	Õ	7.744078	-1.035348	6.580450
119	7	Õ	8.024694	-2.009646	7.156100
120	7	0	7.467679	2.390920	7.143386
	·				

E(HF) = -3361.58356984