Electronic Supplementary Information (ESI)

The fold preference and thermodynamic stability of α-synuclein fibrils is encoded in

the non-amyloid-β component region

Liang Xu, Shayon Bhattacharya, and Damien Thompson*

Department of Physics, Bernal Institute, University of Limerick, V94 T9PX, Ireland

Contents

Fig.	S1.	The	full-length	of	αS I	fibril	structur	es in	the	G-Key	and	5Fold
morpho	ology											pg.S2
Fig.	S2.	Root-m	ean-square	devia	tions	(RMSE	D) of	backbo	one ato	oms of	NAC	fibril
structu	res											pg.S3
Fig.	S3.	RMSD	of bac	ekbone	atom	s of	NAC	fibril	struct	tures ex	cluding	end
monom	ners											.pg.S3
Fig.	S4.	RMSD	of backb	one a	toms	of NA	AC fib	ril stru	uctures	over 1	.5/2.0-ns	MD
simulat	tions.							•••••				pg.S4
Fig. S	55. T	he relat	ion betwee	n conf	ormatic	onal en	ergy (N	IM/PBS	SA ener	gy) and	its indi	vidual
contrib	oution	S										.pg.S5
Fig. S6	6. Pop	ulation o	of in-registe	r HBs iı	n each 1	model						pg.S6
Fig. S7	7. A se	econd M	D simulatio	n of K8	0Q at 2	280 K					p	g.S31
Fig. S8	3. Rad	ial distri	bution func	tions (R	DFs) o	of NaCl-	protein	and Na	Cl-water		p	g.S32
Fig. S	9. Pro	posed as	ssembly pa	thway u	sing th	e identi	ified hot	spots t	to form	NAC fib	rils in di	fferent
folds se	equen	tially									······l	og.S33
Fig. S1	10. RN	ASD of o	xS fibril con	e in diff	ferent f	olds					p§	g. S34
Fig. S1	1 1. M	D simula	tions of ful	l-length	of aS f	fibrils in	n differei	nt folds.			p	g. S35
Fig. S	S12.	Final	conformation	ons of	NAC	fibri	l mutai	nts E8	3A and	d E83K	in di	fferent
folds				•••••				• • • • • • • • • • • •			p	g. S36
Fig.	S13 .	RMS	SD of	NAC	fibril	mut	ants l	E83A	and	E83K	in di	fferent
folds										•••••	p	g. S36
Table S	S1. C	onformat	tional energ	y for di	fferent	systems	s at diffe	rent tım	e interva	als	p	g. S37
Table S	82. A	verage p	ercentage of	t in-regi	ster HE	$3s \ln di$	terent re	egions o	of NAC 1	ibrils	ľ	og.838
Table	83.	The pop	oulation of	salt b	ridges	betwee	n Glu ^{or}	and I	Lys ⁸⁰ in	W1 and	d E83Q	NAC
fibrils.		 1 TL		·····	1						p	g.840
	54	i. In	e contoi	mationa	al ei	nergy	OI	αS	IIDTII	core	in di	
TOIDS	 Ge Ti										f	og.841
Table 3	55. 11 66 C	ne conto	tional energy	nergy 01		ngin as		n anner			p	g. 542
on fibri	30. U	omorma Paga	nonai energ	39 OI 1N2		ins bear	mg Eðð	mutatio	JIS and	water ull		a S 42
on nor	II SUL	ace	••••								p	g.343

Fig. S1. The full-length of α S fibril structures in the G-Key (A) and 5Fold (B) morphology. The N-terminus (residues 1–60), the NAC region (residues 61–95), and the C-terminus (residues 96–140) are colored in cyan, red, and blue, respectively. The NAC region is also highlighted by a transparent space-filling surface. A salt bridge is formed between Glu⁴⁶ and Lys⁸⁰ in the G-Key fibril, and between Glu⁶¹ and Lys⁸⁰ in the 5Fold fibril, respectively, as indicated. The full-length of α S fibril structure in the G-Key was taken from the PDB database (PDB ID: 2N0A). The full-length of α S fibril structure in the 5Fold was constructed based on our previous study of α S(20–110) fibril model (*Eur. J. Med. Chem.* **2016**, 121, 841).

Fig. S2. Root-mean-square deviations (RMSD) of backbone atoms of NAC fibril structures.

Fig. S3. Root-mean-square deviations (RMSD) of backbone atoms of NAC fibril structures excluding end monomers.

Fig. S4. Root-mean-square deviations (RMSD) of backbone atoms of NAC fibril structures, and NAC central structures (excluding end monomers) for different systems.

Fig. S5. The relation between conformational energy (MM/GBSA energy) and its individual contributions. (A) MM/GBSA and MM bonded energy, with a Pearson correlation coefficient (P.C.C. = 0.32); (B) MM/GBSA and MM van der Waals energy, with a Pearson correlation coefficient (P.C.C. = -0.12); (C) MM/GBSA and MM energy, with a Pearson correlation coefficient (P.C.C. = -0.79); (D) MM/GBSA and Polar contribution of GBSA solvation energy, with a Pearson correlation coefficient (P.C.C. = 0.94); (E) MM/GBSA and Nonpolar energy of GBSA solvation energy, with a Pearson correlation coefficient (P.C.C. = -0.09); (F) MM/GBSA and total electrostatic energy (sum of MM electrostatic and GBSA polar solvation energy), with a Pearson correlation coefficient (P.C.C. = 0.97);

Fig. S6. Population of in-register HBs in each model (pages S6–S30).

G-Key_WT_373 K

S13

G-Key_E83Q_280 K

G-Key_E83Q_373 K

Fig. S7. A second MD simulation of K80Q at 280 K. (A) Computed RMSD timeline. (B) Snapshots at different time steps.

Fig. S8. Radial distribution functions (RDFs) of NaCl-protein and NaCl-water for systems simulated

at 310 K in the presence of 0.15 M NaCl.

Fig. S9. Proposed assembly pathway using the identified hot spots to form NAC fibrils in different

folds sequentially.

Fig. S10. RMSD of α S fibril core (residues 35–95) in different folds. Core central structure is the corresponding fibril structure without edge monomers.

Fig. S11. MD simulations of full-length of α S fibrils in different folds. (A) RMSD over the 100-ns MD simulations of α S fibril in the G-Key fold; (B) RMSD over the 100-ns MD simulations of α S fibril in the five-fold; (C) The starting and final conformations of MD simulations in the absence and presence of 0.15 M NaCl at 310 K. Note that the starting conformations used for MD simulations of fibrils in the 0.15 M NaCl were taken from the final conformations of 100-ns MD simulations of fibrils (decamer) in the absence of NaCl (unpublished data).

Fig. S12. Final conformations of α S fibril mutants E83A and E83K in both G-Key and 5Fold morphologies. Each simulation was run for 1 µs at 310 K and in the presence of 0.15 M NaCl.

Fig. S13. RMSD of backbone atoms of α S NAC fibril mutants E83A and E83K in both G-Key and 5Fold morphologies. Each simulation was run for 1 µs in the presence of 0.15 M NaCl at 310 K. (A) Backbone atoms of all chains of α S mutants; (B) Backbone atoms of central chains of α S mutants.

System	Last 100 ns of 1-µs	Last 100 ns of 1.5/2.0-µs
G-Key_WT_280 K	-3764 ± 6	-3764 ± 3
G-Key_K80Q_310 K (Salt)	-4088 ± 5	-4094 ± 2
G-Key_E83Q_310 K	-3564 ± 6	-3563 ± 2
5Fold_WT_310 K (Salt)	-3655 ± 7	-3656 ± 4^{a}

 Table S1. Comparison of conformational energy (in kcal/mol) for different systems averaged at

 different time intervals.

^{*a*} Conformational energy was averaged over the last 100 ns of 2-µs MD simulations.

	System	% of in-register HBs in different regions			
G-Key	WT		I (Edge A)	II (Central)	III (Edge F)
	280 K	0–500	76±10	75±7	73±10
		500-1000	67±7	71±5	57±8
	310 K	0–500	73±8	83±5	64±15
		500-1000	71±8	84±5	54±8
	310 K, 0.15 M NaCl	0–500	73±11	72±7	69±10
		500-1000	70±8	65±5	58±8
	K80Q				
	280 K	0-500	78±9	83±4	80±8
		500-1000	72±8	86±5	82±8
	310 K	0-500	74±10	91±5	93±11
		500-1000	72±8	89±5	93±9
	310 K, 0.15 M NaCl	0-500	85±10	93±6	73±13
		500-1000	69±11	88±5	44±8
	E83Q				
	280 K	0-500	67±10	88±6	51±13
		500-1000	74±9	81±7	36±7
	310 K	0-500	76±10	77±6	51±13
		500-1000	70±9	80±5	47±8
	310 K, 0.15 M NaCl	0-500	57±10	85±6	68±10
		500-1000	65±9	89±5	66±9
	E83A				
	310 K, 0.15 M NaCl	0-500	70±9	71±7	68±10
		500-1000	63±9	78±5	52±9
	E83K				
	310 K, 0.15 M NaCl	0–500	58±7	79±5	59±7
		500-1000	52±9	76±4	53±10
5Fold	WT				
	280 K	0–500	73±7	76±4	69±8
		500-1000	72±7	75±4	68±7
	310 K	0–500	72±7	79±4	72±7
		500-1000	78±8	79±5	72±7
	310 K, 0.15 M NaCl	0–500	79±8	84±4	76±10
		500-1000	61±10	82±5	72±8
	K80Q				
	280 K	0-500	67±8	82±5	78±9
		500-1000	65±8	83±4	87±8

Table S2. Average percentage of in-register HBs in different regions of NAC fibrils

310 K	0–500	74±8	92±5	85±11
	500-1000	74±8	90±5	82±9
310 K, 0.15 M NaCl	0–500	61±9	71±4	71±9
	500-1000	54±5	70±4	71±10
E83Q				
280 K	0–500	74±7	77±4	68±8
	500-1000	71±7	78±4	65±7
310 K	0–500	76±7	80±4	60±9
	500-1000	75±9	82±5	55±6
310 K, 0.15 M NaCl	0-500	76±8	80±4	58±7
	500-1000	76±9	84±4	62±6
E83A				
310 K, 0.15 M NaCl	0-500	35±10	79±6	55±12
	500-1000	32±6	82±4	40±6
E83K				
310 K, 0.15 M NaCl	0–500	76±8	74±5	67±8
	500-1000	60±8	75±4	72±8

Table S3. The population of salt bridges between residues Glu^{61} and Lys^{80} in wild type and E83Q fibrils. A salt bridge is considered to be formed if the distance between any oxygen atom of Glu^{61} and any nitrogen atom of Lys^{80} is ≤ 3.2 Å in at least one frame of 1-µs MD simulations.

System	Percentage (%)
5Fold_WT_280 K	2
5Fold_WT_310 K	1
5Fold_WT_310 K (0.15 M NaCl)	1
5Fold_E83Q_280 K	1
5Fold_E83Q_310 K	1
5Fold_E83Q_310 K (0.15 M NaCl)	1

	System	Conformational	energy	Solvation energy (kcal/mol)
		(kcal/mol)		
		G-Key		
Core ^{<i>a</i>}	WT, 310 K	-5777 ± 5		-4908 ± 75
	WT, 310 K, 0.15 M NaCl	-5726 ± 25		-5626 ± 5
Full-length	WT, 310 K ^b	-31639 ± 43		-54686 ± 1920
	WT, 310 K, 0.15 M NaCl ^c	-15481 ± 10		-28685 ± 48
		5Fold		
Core	WT, 310 K	-5741 ± 4		-5065 ± 73
	WT, 310 K, 0.15 M NaCl	-5703 ± 13		-4745 ± 17
Full-length	WT, 310 K ^b	-30259 ± 12		-96567 ± 5905
	WT, 310 K, 0.15 M NaCl ^c	-15414 ± 10		-42457 ± 70

Table S4. The conformational energy of α S fibril core and full-length fibrils in different folds.

Notes: " α S fibril core contains residues 35–95. MD simulations were performed using the same force field parameters as described in the main text.

^{*b*} The full-length α S fibril contains residues 1–140. MD simulations of full-length decamers were performed using the same methods as described in our previous work (*Eur. J. Med. Chem.*, 2016, 121:841). That is, MD simulations were performed using CHARMM27 force field and NAMD 2 software. The solvation energy of full-length α S fibril was calculated using the GBMV method implemented in CHARMM program.

^{*c*} The starting conformations for MD simulations of the full-length α S fibrils (hexamer) in the presence of 0.15 M NaCl were taken from the last frame of 100-ns MD simulations of α S fibrils (decamer, unpublished data). Representative conformations were shown in **Fig. S11**. Different contributions to the conformational energy of the full-length α S fibrils (hexamer) in the presence of 0.15 M NaCl were summarized in **Table S5**.

Table S5. The conformational energy (and individual contributions) of full-length α S fibrils in different folds. MD simulations were performed in the presence of 0.15 M NaCl and at 310 K. Energy unit: kcal/mol.

	G-Key (kcal/mol)	5Fold (kcal/mol)
MM_Electrostatic	703 ± 40	14543 ± 58
MM_vdW	-2064 ± 7	-2096 ± 7
MM_Bonded	14565 ± 8	14596 ± 5
MM_Total	13205 ± 39	27043 ± 60
GB_Polar	-28951 ± 50	-42725 ± 72
GB_Nonpolar	266 ± 2	268 ± 2
GB_Solvation	-28685 ± 48	-42457 ± 70
Total Electrostatic	-28248 ± 10	-28182 ± 14
MM_GBSA	-15481 ± 10	-15414 ± 10
(Conformational energy)		

Table S6. Conformational energy of NAC fibrils bearing E83 mutations and water diffusion constant on fibril surface. All simulations were under the same condition: 310 K and the presence of 0.15 M NaCl.

E83 mutant	Conformational energy	Solvation energy	Water diffusion constant	
	(kcal/mol)	(kcal/mol)	$(10^{-5} \text{ cm}^2/\text{s})$	
		G-Key		
E83A	-3106 ± 10	-2048 ± 5	2.5 ± 0.1	
E83K	-3176 ± 2	-2912 ± 51	2.6 ± 0.1	
E83Q	-3598 ± 1	-2360 ± 8	2.7 ± 0.0	
		5Fold		
E83A	-3088 ± 17	-1934 ± 39	2.4 ± 0.0	
E83K	-3121 ± 12	-2990 ± 54	2.5 ± 0.0	
E83Q	-3560 ± 2	-2073 ± 5	2.2 ± 0.3	