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S1.   Dissipative Particle Dynamics
In a Dissipative Particle Dynamics (DPD) simulation [1-3], the actual material (solvents, a 

graft copolymer and walls) is modeled as a collection of point particles that represent lumps 

of the material. DPD particles are defined by a mass , position , and velocity , and im ir iv

interact with each other via a force  that is written as the sum of a conservative force , F CF

dissipative force , and random force :DF RF

(S1)RDC FFFF 

 is given as the negative derivative of a particle coarse-grained potential, , i.e.,CF CGu

(S2)CGC urF 

The remaining two forces,  and , which arise from degrees of freedom neglected by DF RF

coarse-graining, are given by
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where  is the separation vector between particle  and particle , ,  jiij rrr  i j ijijr r  rD

and  are weight functions that vanish for ,  is the cut-off radius,  is the  rR crr  cr ij

friction coefficient,  is the noise amplitude, ,  is a Gaussian random ij jiij vvv  jiij  

number with zero mean and unit variance that is chosen independently for each pair of 

interacting particles, and  is the time step.t

Espaňol and Warren [4] showed that the system samples the canonical ensemble and 

obeys the fluctuation-dissipation theorem if the following relationships hold:
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 and  are typically chosen [1] as rD  rR
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The evolution of DPD particles in time  is governed by Newton’s equations of motion:t
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Following Groot and Warren and others [1-4], we considered all the DPD particles to 

be purely repulsive and the -pairs of particles to interact via a soft repulsive potentialij
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where  is the maximum repulsion between particles  and ,  is the separation ija i j jiij rrr 

distance, and  is the cut-off radius. The backbone and graft segments are connected by cr

harmonic spring potentials:

(S10) 201,1, 2
rrKu ii

hs
ii  

acting between adjacent particles  and  in addition to the soft repulsive interaction. In i 1i

Eq. (S10),  is the spring constant ( =4kT, k is the Boltzmann constant and T is the K K

temperature), and  is the equilibrium distance ( =0). 0r 0r

A graft copolymer contains solvophobic backbone beads A that have the interaction with 

solvent s described by ΔasA=asA-ass > 0, and solvophilic graft beads B with solvent interaction 

ΔasB =asB-ass= -5. The interaction of the surface with graft beads is repulsive and those with 

the backbone is attractive, i.e., only the backbone can adsorb on the surface. Solvent 
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selectivity is controlled by varying the repulsion between solvent and backbone beads. 

Complete set of repulsion parameters is given in main paper. Here we only summarize the 

description of solvent quality to avoid the confusion. The solvent with ΔasA = 0 is called the 

good solvent for the backbone (or good common solvent for the copolymer). All solvents with 

ΔasA  0 are poor solvents for the backbone or selective solvents for the grafts. We call the 

solvents with ΔasA = 1, 2 and 3 as the moderately poor solvents for the backbone (or mild 

selective solvents for the grafts), the solvents with ΔasA = 4 and 5 as poor solvent for the 

backbone (selective solvents for the grafts) and those with ΔasA = 6 and 7 as very poor solvent 

for the backbone (very selective or strongly selective solvents for grafts).
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S2.   Bounce-Back Surface Boundary Conditions

Modelling of solid surfaces is not straightforward in DPD, see for example Refs. 5 to 7. Soft 

nature of the repulsion potential between beads cannot prevent fluid beads from penetrating 

surface boundaries. Therefore, an extra effort is needed to impose no-slip surface boundary 

conditions. In a well-accepted and successfully tested approach, the surface beads are 

represented by “frozen” beads with the same density as the fluid, which are fixed and are not 

taken into account in the integration of equations of motion. The motion of fluid beads 

approaching the surface is modelled as their reflection (bounce back) from the surface when 

they are about to penetrate the surface. The principle of the implementation of no-slip surface 

boundary conditions into the DPD simulation machinery is depicted in Figure S1, which 

shows the trajectory of a fluid bead which is approaching the solid surface. The bounce-back 

reflection scheme successfully suppresses unphysical fluctuations of fluid density close to the 

surface and correctly imposes no-slip surface boundary conditions. 

Figure S1: Schematic representation of bounce-back reflection between fluid and surface 

beads.

5



S3.   Definition of Observables

The size of a graft copolymer was described by its radius of gyration, Rg, which is defined 

through the square radius of gyration [8]

(S11)
𝑅2

𝑔 =
1
𝑁

𝑁

∑
𝑖 = 1

[(𝑥𝑖 ‒ 𝑥𝑐𝑜𝑚)2 + (𝑦𝑖 ‒ 𝑦𝑐𝑜𝑚)2 + (𝑧𝑖 ‒ 𝑧𝑐𝑜𝑚)2]

where N is the total number of beads of the graft copolymer, xi, yi and zi are the Cartesian 

coordinates of bead i, and the subscript com denotes the centre of mass of the graft 

copolymer. A value of Rg was obtained as square root of the ensemble average of . Besides 𝑅2
𝑔

Rg for the whole graft copolymer, we also computed the radius of gyration for the backbone, 

RgA, via Eq. (S11) where N was replaced by the number of backbone beads NA.

The graft copolymer in confined geometries can be further characterized by the radius 

of gyration parallel and perpendicular to the surface,  and , respectively, which are 𝑅𝑔 ∥ 𝑅𝑔 ⊥

given by expressions:

(S12a)
𝑅 2

𝑔 ∥ =
1
𝑁

𝑁

∑
𝑖 = 1

(𝑥𝑖 ‒ 𝑥𝑐𝑜𝑚)2 + (𝑦𝑖 ‒ 𝑦𝑐𝑜𝑚)2

(S12b)
𝑅 2

𝑔 ⊥ =
1
𝑁

𝑁

∑
𝑖 = 1

(𝑧𝑖 - 𝑧𝑐𝑜𝑚)2

Note that . The ratio of perpendicular and parallel components of Rg can then 𝑅2
𝑔 = 𝑅 2

𝑔 ∥ + 𝑅 2
𝑔 ⊥

serve as an indicator if a graft copolymer is adsorbed or not, i.e.

(S13)

𝑅 2
𝑔 ⊥

𝑅 2
𝑔||

{ →0:
> 1:

𝑎𝑑𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑜𝑛 𝑡ℎ𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒        
 𝑛𝑜 𝑎𝑑𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑜𝑛 𝑡ℎ𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 �

To further describe the adsorption of the graft copolymer onto the surface we measured 

the fraction of backbone segments within distance 2rc from the surface, ϕ:

(S14)
𝜙 =

𝑁𝐴(𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑)

𝑁𝐴
     

where  is total number of backbone beads within distance 2rc from the surface [9]. 𝑁𝐴(𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑)

The mobility of the graft copolymer was assessed by graft copolymer’s centre-of-mass 

autocorrelation function

6



(S15)
𝐴𝐶𝐹𝑐𝑜𝑚(𝑡) =

〈𝑅𝑐𝑜𝑚(𝑡0)𝑅𝑐𝑜𝑚(𝑡0 + 𝑡)〉 ‒ 〈𝑅𝑐𝑜𝑚(𝑡0)〉〈𝑅𝑐𝑜𝑚(𝑡0 + 𝑡)〉
〈𝑅𝑐𝑜𝑚(𝑡0)𝑅𝑐𝑜𝑚(𝑡0)〉 ‒ 〈𝑅𝑐𝑜𝑚(𝑡0)〉〈𝑅𝑐𝑜𝑚(𝑡0)〉

backbone’s end-to-end distance autocorrelation function

(S16)
𝐴𝐶𝐹𝑒(𝑡) =

〈𝑅𝑒(𝑡0)𝑅𝑒(𝑡0 + 𝑡)〉 ‒ 〈𝑅𝑒(𝑡0)〉〈𝑅𝑒(𝑡0 + 𝑡)〉
〈𝑅𝑒(𝑡0)𝑅𝑒(𝑡0)〉 ‒ 〈𝑅𝑒(𝑡0)〉〈𝑅𝑒(𝑡0)〉

and the corresponding autocorrelation times  . In Eqs. (S15) and (S16), , 𝜏𝑚𝑎𝑥 𝑅𝑐𝑜𝑚 = |𝑅𝑐𝑜𝑚|

,  and  are, respectively, the centre-of-mass position and end-to-end distance of 𝑅𝑒 = |𝑅𝑒| 𝑅𝑐𝑜𝑚 𝑅𝑒

the graft copolymer, and  denotes an ensemble average. Note that t0 denotes the beginning 〈.〉

of the time interval (t0, t0 + t), i.e., t0 is a variable that runs over the whole simulation 

trajectory. For the weak and strong adsorption states, the autocorrelation functions were 

evaluated from the x- and y-components of Rcom and Re, i.e., parallel with the wall. Values of 

 were determined using the correlation time estimator . 𝜏𝑚𝑎𝑥 𝜏(𝑡)

(S17)
𝜏(𝑡) =

1
2

+

𝑁𝑟𝑢𝑛

∑
𝑘 = 1

𝐴𝐶𝐹(𝑘)(1 ‒
𝑘

𝑁𝑟𝑢𝑛
)

where Nrun are increasing numbers of simulation steps (corresponding to increasing time t) 

and t = Nrun Nstept; Nstep=1 000 is the number of time steps between two stored 

configurations and t=0.05.  typically increases with t and it reaches a plateau value which 𝜏(𝑡)

corresponds to a value of  [10]. In addition for adsorption states, we computed the squared 𝜏𝑚𝑎𝑥

lateral displacement of copolymer’s centre-of-mass

(S18)∆ 2
𝑥𝑦(𝑡) = [𝑥𝑐𝑜𝑚(𝑡) ‒ 𝑥𝑐𝑜𝑚(𝑡0)]2 + [𝑦𝑐𝑜𝑚(𝑡) ‒ 𝑦𝑐𝑜𝑚(𝑡0)]2

Determination of   includes averaging over different time origins .∆ 2
𝑥𝑦 𝑡0
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S4.   Additional Results

To distinguish different systems studied, we denoted the particular systems as NA-m-

NB(ΔasA). So for example, 323-16-20(2) corresponds to a graft copolymer with NA=323 

backbone beads, spacing m=16, NB=20 graft beads immersed in solvent with asA=2 for the 

solvent-backbone interactions. The same abbreviations are used for systems differing in the 

grafting density: LGC (“less grafted copolymers”) for copolymers with the spacing m=8 and 

MGC (“more grafted copolymer”) for copolymers with the spacing m=16.

Figure S2: Simulation snapshots of graft copolymers under good solvent conditions 

ΔasA=0. (a) Weak adsorption of LGC with short grafts, 323-16-5(0). (b) No adsorption of 

LGC with long grafts, 323-16-25(0). (c) No adsorption of graft copolymer densely grafted 

by short grafts, 323-8-5(0). (d) No adsorption of MGC with long grafts, 323-8-25(0). (e) 

and (f) show MGC with short grafts, 323-8-2(0), before and after adsorption on the 

surface, respectively. (g) and (h) display LGC with short grafts, 323-16-2(0), before and 

after adsorption, respectively. Red, blue and purple beads represent backbone, graft and 

wall segments, respectively. Solvent beads were omitted and graft beads were made 

transparent for the sake of clarity. 
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Figure S3: Simulation snapshots of graft copolymers under moderately poor solvent 

conditions ΔasA=3. (a) Strong adsorption of LGC with short grafts, 323-16-5(3). (b) 

Strong adsorption of LGC with long grafts, 323-16-30(3). (c) Strong adsorption of MGC 

with short grafts, 323-8-5(3). (d) No adsorption of MGC with long grafts, 323-8-30(3). 

(e) and (f) show MGC with long grafts, 323-8-20(3), before and after adsorption on the 

surface, respectively. (g) and (h) display LGC with long grafts, 323-16-20(3), before and 

after adsorption, respectively. Red, blue and purple beads represent backbone, graft and 

wall segments, respectively. Solvent beads were omitted and graft beads were made 

transparent for the sake of clarity. 
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Figure S4: Simulation snapshots of graft copolymers under poor solvent conditions 

ΔasA=5. (a) Strong adsorption of LGC with short grafts, 323-16-5(5). (b) No adsorption 

of LGC with long grafts, 323-16-30(5). (c) Strong adsorption of MGC with short grafts, 

323-8-5(5). (d) Strong adsorption of MGC with moderately long grafts, 323-8-15(5). (e) 

and (f) show MGC with long grafts, 323-8-20(5), before and after adsorption on the 

surface, respectively. (g) and (h) display LGC with long grafts, 323-16-20(5), before and 

after adsorption, respectively. Red, blue and purple beads represent backbone, graft and 

wall segments, respectively. Solvent beads were omitted and graft beads were made 

transparent for the sake of clarity. 
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Figure S5: Simulation snapshots of graft copolymers under very poor solvent conditions 

ΔasA=7. (a) Strong adsorption of LGC with short grafts, 323-16-2(7). (b) No adsorption 

of LGC with long grafts, 323-16-30(7). (c) Strong adsorption of MGC with short grafts, 

323-8-2(7). (d) No adsorption of MGC with long grafts, 323-8-30(7). (e) and (f) show 

MGC with short grafts, 323-8-5(7), before and after adsorption on the surface, 

respectively. (g) and (h) display LGC with short grafts, 323-16-5(7), before and after 

adsorption, respectively. Red, blue and purple beads represent backbone, graft and wall 

segments, respectively. Solvent beads were omitted and graft beads were made 

transparent for the sake of clarity. 
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S5.   Video Files

Video files illustrate typical scenarios observed in our simulations. They are labeled as 

scenario_NA-m-NB(ΔasA) where scenario refers to state of graft copolymers such as micelle or 

adsorption.

Micelle_323-16-30(7): dynamics of LGC with long grafts under very poor solvent conditions 

forming a micelle. Red, blue and purple beads represent backbone, graft and wall segments, 

respectively. Solvent beads were omitted and graft beads were made transparent for the sake 

of clarity.

NecklaceMicelle_323-8-30(7): dynamics of MGC with long grafts under very poor solvent 

conditions forming a necklace of micelles. Red, blue and purple beads represent backbone, 

graft and wall segments, respectively. Solvent beads were omitted and graft beads were made 

transparent for the sake of clarity.

NoAdsorption_323-8-15(1): dynamics of MGC with moderately long grafts under 

moderately poor (slightly better than theta conditions, ΔasA=1.64) solvent conditions not 

adsorbing onto the surface. Red, blue and purple beads represent backbone, graft and wall 

segments, respectively. Solvent beads were omitted and graft beads were made transparent for 

the sake of clarity.

WeakAdsorption_323-16-2(0): dynamics of LGC with short grafts under good solvent 

conditions weakly adsorbing onto the surface. Red, blue and purple beads represent backbone, 

graft and wall segments, respectively. Solvent beads were omitted and graft beads were made 

transparent for the sake of clarity.

WeakAdsorption_323-8-2(0): dynamics of MGC with short grafts under good solvent 

conditions weakly adsorbing onto the surface. Red, blue and purple beads represent backbone, 

graft and wall segments, respectively. Solvent beads were omitted and graft beads were made 

transparent for the sake of clarity.

StrongAdsorption_323-16-10(7): dynamics of LGC with short grafts under very poor 

solvent conditions strongly adsorbing onto the surface. Red, blue and purple beads represent 

backbone, graft and wall segments, respectively. Solvent beads were omitted and graft beads 

were made transparent for the sake of clarity.
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StrongAdsorption_323-8-10(7): dynamics of MGC with short grafts under very poor solvent 

conditions strongly adsorbing onto the surface. Red, blue and purple beads represent 

backbone, graft and wall segments, respectively. Solvent beads were omitted and graft beads 

were made transparent for the sake of clarity.

StrongAdsorption_323-16-20(3): dynamics of LGC with long grafts under moderately poor 

solvent conditions strongly adsorbing onto the surface. Red, blue and purple beads represent 

backbone, graft and wall segments, respectively. Solvent beads were omitted and graft beads 

were made transparent for the sake of clarity.

StrongAdsorption_323-8-20(3): dynamics of MGC with long grafts under moderately poor 

solvent conditions strongly adsorbing onto the surface. Red, blue and purple beads represent 

backbone, graft and wall segments, respectively. Solvent beads were omitted and graft beads 

were made transparent for the sake of clarity.
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S6.   Mobility of the Graft Copolymer in Equilibrium States 

We assessed mobility of the graft copolymer in the various regions of the phase diagram using 

the autocorrelation functions ACFcom and ACFe, and correlation time . Figures S6, S7 and 𝜏𝑚𝑎𝑥

S8 display examples of ACFs for non-adsorption, weak and strong adsorption states, 

respectively. For the non-adsorption regions, we chose three systems: 323-16-20(0), 323-16-

40(0), and 323-8-20(0). For the weak adsorption regions, we selected two systems: 323-16-

20(1) and 323-8-20(2). For the strong adsorption regions, we picked two systems: 323-16-

20(3) and 323-8-20(3). 

Figure S9 then shows examples of   for the non-adsorption, weak and strong 𝜏(𝑡)

adsorption states where a plateau value in  at long time corresponds to a value of . We 𝜏(𝑡) 𝜏𝑚𝑎𝑥

found that values of the correlation time ranged from in the non-adsorption regions 𝜏𝑚𝑎𝑥≅200 

to  in the strong adsorption region. Values of evaluated from ACFcom are two to 𝜏𝑚𝑎𝑥≅2000 𝜏𝑚𝑎𝑥 

three times shorter than the ones computed using ACFe and they are by more than two orders 

smaller than the total length of simulations,  to 800,000. It is obvious that the 𝑡𝑟𝑢𝑛 = 150,000

mobility and flexibility of the strongly adsorbed system 323-16-20(3) are appreciably lower 

than those of the weakly adsorbed or non-adsorbed systems (corresponding values of are 𝜏𝑚𝑎𝑥 

ca. four-times longer as compared with the weakly adsorbed and ca. eight-times longer as 

compared with the non-adsorbed chains). The conformation of the backbone (represented by 

its end-to-end distance) changes relatively slowly, but  characterizing lateral motion of the 𝜏𝑚𝑎𝑥

adsorbed 323-16-20(3) chain on the surface is two-times shorter than that corresponding to 

fluctuation in backbone end-to-end distance. These values (more than two orders of 𝜏𝑚𝑎𝑥

magnitude smaller than the total length of the simulation run) prove that the adsorbed chains 

are not kinetically frozen and that the simulation yields reliable and well-equilibrated data.

Figure S10 shows examples of adsorption dynamics, , and squared lateral 𝜙(𝑡)

displacement, , for LGC and MGC systems in the strong adsorption regions. Note that Δ 2
𝑥𝑦(𝑡)

time derivative of  is related to self-diffusivity of the graft copolymer. Fluctuations in  Δ 2
𝑥𝑦(𝑡) 𝜙

and an increase of  with time indicate that the graft copolymer is not frozen on the surface Δ 2
𝑥𝑦

but it diffuses along the surface. If a graft copolymer would be frozen on a surface its  Δ 2
𝑥𝑦

would be constant.
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            (a)

             (b)

Figure S6: Examples of (a) graft copolymer’s centre-of-mass autocorrelation function, 

ACFcom, and (b) backbone’s end-to-end distance autocorrelation function, ACFe, of the 

graft copolymer in the non-adsorption regions. 
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              (a)

              (b)

Figure S7: Examples of (a) graft copolymer’s centre-of-mass autocorrelation function, 

ACFcom, and (b) backbone’s end-to-end distance autocorrelation function, ACFe, of the 

graft copolymer in the weak adsorption regions. 
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              (a)

              (b)

Figure S8: Examples of (a) graft copolymer’s centre-of-mass autocorrelation function, 

ACFcom, and (b) backbone’s end-to-end distance autocorrelation function, ACFe, of the 

graft copolymer in the strong adsorption regions. 
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              (a)

              (b)

Figure S9: Examples of the correlation time estimator  evaluated from (a) the graft 𝜏(𝑡)

copolymer’s centre-of-mass autocorrelation function, ACFcom and (b) the backbone’s end-

to-end distance autcorrelation function, ACFe, for the graft copolymer in the non-

adsorption, and weak and strong adsorption regions. A plateau value in  at long time 𝜏(𝑡)

corresponds to a value of the correlation time . 𝜏𝑚𝑎𝑥
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              (a)

              (b)

Figure S10: Examples of adsorption dynamics  and squared lateral displacement of 𝜙(𝑡)

copolymer’s centre-of-mass, , for (a) MGC 323-8-20(3) and (b) LGC 323-16-20(3) ∆ 2
𝑥𝑦(∆𝑡)

adsorbed on the surface. Panels (a) and (b) display only a part of equilibrium trajectories. 

S7.   Dynamics of the Adsorption Process

19



In order to complete the discussion of the sorption dynamics and to give some pieces of 

information necessary for better understanding of the section  ”Results and Discussion”, we 

present several simulation trajectories from the very beginning because they allow to compare 

the periods necessary for the first sorption-producing contact of the copolymer with the 

surface and the dynamics which follows. As mentioned in the paper, the conformations are 

generated with correct probabilities how they occur in the canonical ensemble, hence the 

period necessary for the “first capture” of the chain by the attractive surface indicate in a good 

approximation how readily the chains in the vicinity of the surface are adsorbed. It means that 

the length of the initial period before the adsorption (together with the inspection of the 

conformations that precede and follow the capture of the copolymer) provide valuable semi-

quantitative information on the speed and mechanism of the sorption process. Even though 

this information is based on a single trajectory only, careful inspections of the whole 

trajectories allow one to judge how instantaneous conformations of chains approaching the 

attractive surface, which are influenced both by the bulk solvent quality and by polymer-

surface interaction, affect the sorption process and how the copolymer-solvent interactions 

compete with copolymer-surface interactions.

Because the Figures S3 to S6 are discussed in detail in pertinent parts of “Results and 

Discussion”, here we present only the simulation data with appropriate legends and refer the 

reader to the main text.
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Figure S11: Adsorption dynamics of graft copolymers with the graft lengths NB=2 in good 
solvent for the backbone, ΔasA=0 for (a) MGC (m=8), and (b) LGC (m=16), respectively. The 
vertical lines denote the boundary where we started to evaluate the ensemble averages.  

Figure S12: Adsorption dynamics of graft copolymers with the graft lengths NB=20 in 
moderately poor solvent for the backbone, ΔasA=3 for (a) MGC (m=8), and (b) LGC (m=16), 
respectively. The vertical lines denote the boundary where we started to evaluate the 
ensemble averages. 
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Figure S13: Adsorption dynamics of graft copolymers with the graft lengths NB=20 in poor 
solvent for the backbone, ΔasA=5 for (a) MGC (m=8), and (b) LGC (m=16), respectively. The 
vertical lines denote the boundary where we started to evaluate the ensemble averages. 

Figure S14: Adsorption dynamics of graft copolymers with the graft lengths NB=5 in very 
poor solvent for the backbone, ΔasA=7 for (a) MGC (m=8), and (b) LGC (m=16), 
respectively. The vertical lines denote the boundary where we started to evaluate the 
ensemble averages.  
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