Electronic Supplementary Information

Magnesium Bis(trifluoromethanesulfonyl)amide Complexes with Triglyme and Asymmetric Homologues: Phase Behavior, Coordination Structures and Melting Point Reduction

Kei Hashimoto,^{‡a} Soma Suzuki,^{‡a} Morgan L. Thomas,^a Toshihiko Mandai,^b Seiji Tsuzuki,^c Kaoru Dokko^{*a,d} and Masayoshi Watanabe^a

[‡]K. H. and S. S. contributed equally to this work

^a Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.

^b Faculty of Science and Engineering, Graduate School of Engineering, Iwate University,

⁴⁻³⁻⁵ Ueda, Morioka, Iwate 020-8551, Japan

^c Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.

^d Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Kyoto 615-8510, Japan

	[Mg(G3)][TFSA] ₂	[Mg(G3Et)][TFSA] ₂	[Mg(G4Et)][TFSA] ₂
Reference	[S1]	This study	This study
Chemical formula	$C_{12}H_{18}F_{12}MgN_2O_{12}S_4\\$	$C_{13}H_{20}F_{12}MgN_2O_{12}S_4\\$	$C_{15}H_{24}F_{12}MgN_2O_{12}S_4\\$
Formula weight	762.83	776.86	820.91
Crystal system	Triclinic	Orthorhombic	Orthorhombic
Space group	<i>P</i> 1 (no. 1)	<i>Pca</i> 2 ₁ (no. 29)	<i>Pca</i> 2 ₁ (no. 29)
<i>a /</i> Å	8.7021(4)	14.1667(11)	18.8845(18)
<i>b</i> / Å	9.1183(6)	12.2367(11)	13.5041(14)
<i>c</i> / Å	9.2356(5)	17.2204(15)	25.530(2)
lpha / °	97.006(5)	90	90
eta / °	95.727(4)	90	90
γ / °	100.012(5)	90	90
$V/ Å^3$	710.77(7)	2985.2(4)	6510.6(10)
Ζ	1	4	8
$D_{ m calc}$ / g cm $^{-3}$	1.782	1.729	1.675
μ / mm ⁻¹	0.491	0.469	0.437
Temp. / °C	-50	-50	-50
Reflections collected	8422	8939	19393
Independent reflection, R_{int}	3659, 0.0376	3127, 0.1030	4911, 0.1664
$R_1 \left[I > 2\sigma(I) \right]$	0.0473	0.0767	0.1036
wR_2 (all data)	0.1294	0.2162	0.2925
GooF	0.891	1.003	1.029
Largest residual density / e $Å^{-3}$	0.409, -0.410	0.721, -0.500	0.990, -0.520

Table S1 Crystallographic data of $[Mg(G3)][TFSA]_2$, $[Mg(G3Et)][TFSA]_2$ and $[Mg(G4Et)][TFSA]_2$.

*The precision of the analyses is not good enough to be registered with Cambridge Structural Database (CSD), thus, the $[Mg(G3Et)][TFSA]_2$ and $[Mg(G4Et)][TFSA]_2$ crystals have no CCDC number. $[Mg(G3)][TFSA]_2$: CCDC 1541951.

Composition (Mg[TFSA] ₂ : G3)	$T_{\rm d}$ / °C
Pure G3	98
1:5	104
1:2	151
1:1	241
Mg[TFSA]2 salt	342

Table S2 Decomposition temperatures (T_d) of Mg[TFSA]₂ and G3 binary mixtures estimated by TG measurements.

* $T_{\rm d}$ was defined as the temperature at 5% mass loss.

Fig. S1 Calculated Raman bands for $[Mg(G3)][TFSA]^+$ with bidentate and monodentate anions. The optimized structure is shown in Fig. 5c and d.

Fig. S2 Raman spectra in the crystalline and the molten states of $[Mg(G3)][TFSA]_2$, in the range of 680–600 cm⁻¹.

Fig. S3 DSC thermogram of equimolar mixture of Mg[TFSA]₂ and G4 together with the corresponding one for G4Et.

Fig. S4 TG curves of Mg[TFSA]₂/G3Bu, Mg[TFSA]₂/G3Et and Mg[TFSA]₂/G4Et binary mixtures with different Mg[TFSA]₂ concentrations. T_{ds} of [Mg(G3Bu)][TFSA]₂, [Mg(G3Et)][TFSA]₂ and [Mg(G4Et)][TFSA]₂ were estimated to be 251, 234 and 287 °C, respectively.

Fig. S5 Raman spectra of (a) [Mg(G3Et)][TFSA]₂, [Mg(G3Bu)][TFSA]₂ and (b) [Mg(G4Et)][TFSA]₂ with corresponding data for the G3 and G4 systems.

Fig. S6 Thermal ellipsoid models (left) and packing diagrams (right) of (a) [Mg(G3Et)][TFSA]₂ and (b) [Mg(G4Et)][TFSA]₂ crystals.

$T / ^{\circ}\mathrm{C}$	$ ho$ / g cm $^{-3}$	$c / \mathrm{mol} \mathrm{dm}^{-3}$	η / mPa s	σ / S cm ⁻¹
30	1.573	1.954	2.702×10^{4}	5.35×10^{-6}
35	1.568	1.948	1.620×10^{4}	_a
40	1.563	1.942	1.002×10^{4}	1.20×10^{-5}
45	1.558	1.936	6.405×10^{3}	_a
50	1.552	1.928	4.218×10^{3}	2.41×10^{-5}
60	1.542	1.916	1.978×10^{3}	4.46×10^{-5}
70	1.532	1.903	1.016×10^{3}	7.67×10^{-5}
80	1.520	1.888	5.638×10^{2}	1.23×10^{-4}
90	_a	_a	3.360×10^{2}	$1.89 imes 10^{-4}$
100	_a	_a	2.115×10^{2}	2.73×10^{-4}
110	_a	_a	1.392×10^{2}	3.85×10^{-4}
120	_a	_a	9.430×10^{1}	5.28×10^{-4}
130	_a	_a	6.820×10^{1}	7.01×10^{-4}
140	_a	_a	4.989×10^{1}	9.11×10^{-4}
150	_a	_a	3.772×10^{1}	1.15×10^{-3}

Table S3 Densities (ρ), concentration of Mg[TFSA]₂ (c), viscosities (η) and ionic conductivities (σ) at various temperatures (T) for the equimolar mixture of Mg[TFSA]₂ and G3Bu.

^a N.A.

Fig. S7 Walden plot for $[Mg(G3Bu)][TFSA]_2$. The molar conductivities (Λ_{imp}) were corrected as 1/2 of the original values.

Reference

S1 S. Tsuzuki, T. Mandai, S. Suzuki, W. Shinoda, T. Nakamura, T. Morishita, K. Ueno, S.Seki, Y. Umebayashi, K. Dokko and M. Watanabe, *Phys. Chem. Chem. Phys.*, 2017, 19, 18262–18272.