SUPPLEMENTARY INFORMATION

A Photoelectron Spectroscopy and Quantum Chemical Study on Ternary AI-B-O Clusters: $AI_nBO_2^-$ and AI_nBO_2 (n = 2, 3)[†]

Ting Ou,^a Yuan Feng,^b Wen-Juan Tian,^a Li-Juan Zhao,^b Xiang-Yu Kong,^b

Hong-Guang Xu,^b Wei-Jun Zheng*^{bc} and Hua-Jin Zhai*^a

^a Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
^b Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
^c University of Chinese Academy of Sciences, Beijing 100049, China

*E-mail: zhengwj@iccas.ac.cn; hj.zhai@sxu.edu.cn

- **Figure S1.** Alternative optimized isomeric structures of $Al_2BO_2^-$ anion cluster at the B3LYP/6-311+G(d) level. Relative energies (in kcal mol⁻¹) are indicated at the B3LYP and single-point CCSD(T) (in *italic*) levels. The B atom is shown in blue, Al in pink, and O in red.
- Figure S2. Alternative optimized isomeric structures of Al₂BO₂ neutral cluster at the B3LYP/6-311+G(d) level. Relative energies (in kcal mol⁻¹) are indicated at the B3LYP and single-point CCSD(T) (in *italic*) levels. The B atom is shown in blue, Al in pink, and O in red.
- **Figure S3.** Alternative optimized isomeric structures of $Al_3BO_2^-$ anion cluster at the B3LYP/6-311+G(d) level. Relative energies (in kcal mol⁻¹) are indicated at the

B3LYP and single-point CCSD(T) (in *italic*) levels. The B atom is shown in blue, Al in pink, and O in red.

- Figure S4. Alternative optimized isomeric structures of Al₃BO₂ neutral cluster at the B3LYP/6-311+G(d) level. Relative energies (in kcal mol⁻¹) are indicated at the B3LYP and single-point CCSD(T) (in *italic*) levels. The B atom is shown in blue, Al in pink, and O in red.
- Figure S5. Simulated photoelectron spectra of Al₃BO₂⁻ cluster on the bases of isomers (b) 3b (C_s, ²A") and (c) 3c (C_s, ²A'), as compared to experimental data at (a) 266 nm (4.661 eV). The simulations were done at the time-dependent B3LYP/6-311+G(d) (TD-B3LYP) level, by fitting calculated VDEs with unit-area Gaussian functions of 0.04 eV half-width.
- **Figure S6.** Chemical bonding in Al₂BO₂⁻ **2a** cluster. (a) AdNDP bonding pattern. Occupation numbers (ONs) are shown. (b) Canonical molecular orbitals (CMOs).
- Figure S7. Chemical bonding in Al₂BO₂⁻ 2b cluster. (a) AdNDP bonding pattern. ONs are shown. (b) CMOs.
- Figure S8. Chemical bonding in $Al_3BO_2^- 3a$ cluster. (a) AdNDP bonding pattern; one extra electron is added in the analysis because the current version of AdNDP program applies for closed-shell species only. ONs are shown. (b) CMOs. SOMO stands for the singly occupied molecular orbital.
- Figure S9. Chemical bonding in Al₃BO₂⁻ 3d cluster. (a) AdNDP bonding pattern; one extra electron is added in the analysis because the current version of AdNDP program applies for closed-shell species only. ONs are shown. (b) CMOs. SOMO stands for the singly occupied molecular orbital.

Figure S1. Alternative optimized isomeric structures of $Al_2BO_2^-$ anion cluster at the B3LYP/6-311+G(d) level. Relative energies (in kcal mol⁻¹) are indicated at the B3LYP and single-point CCSD(T) (in *italic*) levels. The B atom is shown in blue, Al in pink, and O in red.

Figure S2. Alternative optimized isomeric structures of Al_2BO_2 neutral cluster at the B3LYP/6-311+G(d) level. Relative energies (in kcal mol⁻¹) are indicated at the B3LYP and single-point CCSD(T) (in *italic*) levels. The B atom is shown in blue, Al in pink, and O in red.

Figure S3. Alternative optimized isomeric structures of $Al_3BO_2^-$ anion cluster at the B3LYP/6-311+G(d) level. Relative energies (in kcal mol⁻¹) are indicated at the B3LYP and single-point CCSD(T) (in *italic*) levels. The B atom is shown in blue, Al in pink, and O in red.

Figure S4. Alternative optimized isomeric structures of Al_3BO_2 neutral cluster at the B3LYP/6-311+G(d) level. Relative energies (in kcal mol⁻¹) are indicated at the B3LYP and single-point CCSD(T) (in *italic*) levels. The B atom is shown in blue, Al in pink, and O in red.

Figure S5. Simulated photoelectron spectra of $Al_3BO_2^-$ cluster on the bases of isomers (b) 3b $(C_s, {}^2A'')$ and (c) 3c $(C_s, {}^2A')$, as compared to experimental data at (a) 266 nm (4.661 eV). The simulations were done at the time-dependent B3LYP/6-311+G(d) (TD-B3LYP) level, by fitting calculated VDEs with unit-area Gaussian functions of 0.04 eV half-width.

Figure S6. Chemical bonding in Al₂BO₂⁻**2a** cluster. (a) AdNDP bonding pattern. Occupation numbers (ONs) are shown. (b) Canonical molecular orbitals (CMOs).

Figure S7. Chemical bonding in Al₂BO₂⁻ **2b** cluster. (a) AdNDP bonding pattern. ONs are shown. (b) CMOs.

Figure S8. Chemical bonding in Al₃BO₂⁻ 3a cluster. (a) AdNDP bonding pattern; one extra electron is added in the analysis because the current version of AdNDP program applies for closed-shell species only. ONs are shown. (b) CMOs. SOMO stands for the singly occupied molecular orbital.

Figure S9. Chemical bonding in Al₃BO₂⁻ 3d cluster. (a) AdNDP bonding pattern; one extra electron is added in the analysis because the current version of AdNDP program applies for closed-shell species only. ONs are shown. (b) CMOs. SOMO stands for the singly occupied molecular orbital.

